
Understanding the Performance Benefit of Asynchronous Data Transfers in OpenCL
Programs Executing on Media Processors

Nagendra Gulur

Texas Instruments (India)
Bangalore, India

Email: nagendra@ti.com

Suriya Narayanan L

Texas Instruments (India)
Bangalore, India

Email: s-narayananl@ti.com

Abstract—In this work, we study the performance benefits
of using asynchronous data transfers in OpenCL programs
executing on media processors. Asynchronous data transfers
are typically implemented by use of Direct Memory Access
(DMA) engines that can be programmed to transfer data
from one memory location to another. Asynchronous transfers
can free up processing cores from managing data transfers
and having to wait for transfer completion. In a typical
programming model using asynchronous transfers, the kernel
uses a double-buffering scheme wherein data is moved to/from
one buffer (“scratch-pad”) while the core operates on the other
buffer. Intuitively, this model allows the cost of data transfers
to be hidden or overlapped with computation.

This is in contrast with accessing data “through the cache”.
Here, the core executes loads and stores to access the required
data. Due to the inherent spatial and temporal locality of ac-
cesses, the cache hierarchy plays a significant role in mitigating
the cost/delay associated with frequent off-chip accesses.

In this work, we seek to understand the performance gains
expected with use of asynchronous transfers in a typical
media processor. To do so, we first develop a simple yet
insightful model of performance that helps quantify the benefits
of asynchronous transfers over cache-based accesses in such
processors. Next, we experimentally evaluate these program-
ming styles on a variety of kernels executing on the Texas
Instruments Keystone-II multi-core DSP platform. We observe
that asynchronous data transfers can improve performance of
image-processing OpenCL programs by as much as 5×, with
an average improvement of 40%.

Keywords-OpenCL; Multi-core; DDR; DMA; Image Process-
ing;

I. INTRODUCTION

OpenCL [1] has emerged as a de-facto standard for writ-

ing portable high performance kernels that can be compiled

and run on a variety of hardware platforms, including CPU

cores (such as x86 [2] & AMD [3]), GPU cores (from

vendors such as NVIDIA [4], ARM [5], & Imagination [6]),

and DSP cores (from vendors such as Texas Instruments [7]).

These kernels, written in the C99 [8] language, are invoked

from a host application by a well-defined set of APIs

defined by the OpenCL standard specification. Typically,

these kernels are compute-intensive tasks that operate on

large chunks of data with fairly regular processing and

communication patterns.

Image processing algorithms fit this programming model

and a variety of different image processing tasks have been

implemented and accelerated using this standard [9]. Most

low-level image processing functions involve transforming

the input image data in various ways, such as filtering,

scaling, rotating, computing differences between a pair of

images, and so on. These kernels typically stride through

the input images in a regular access pattern. Typically, due

to the spatial locality of accesses, hardware caches achieve

high cache hit rates.

In this work, we consider media processors. Media proces-

sors typically comprise one or more specialized cores with

video/vision/imaging-oriented instruction-sets, and efficient

data streaming interfaces. While these cores support complex

functional units, they generally avoid sophisticated features

of general-purpose cores such as out-of-order execution,

branch prediction and multiple hardware thread contexts.

The memory hierarchy may comprise one or more levels of

caches or scratch-pads backed by an off-chip main memory.

They are generally provisioned with sophisticated DMA
engines to ensure efficient streaming of data between the

off-chip memory and internal scratch-pads. In such systems,

cache based accesses (abbreviated CB in the rest of the

paper) suffer from two limitations:

• Cache misses result in severe performance penalty due

to off-chip main memory accesses.

• In multi-core configurations, cache misses suffer signif-

icant inter-core interference at shared resources such as

the main memory and the shared on-chip data transfer

network.

A typical off-chip memory access can take hundreds of

processor cycles (see Section IV for a detailed description

of our evaluation methodology). In the absence of hardware

support to hide this penalty, much of this time is spent

stalling the requesting core. While a single core’s requests

may have spatial locality in the off-chip memory, when

multiple cores contend for main memory, this spatial locality

is often destroyed causing large inefficiencies in off-chip

2015 IEEE 22nd International Conference on High Performance Computing

978-1-4673-8488-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HiPC.2015.14

135

memory accesses1. Thus we seek to evaluate the perfor-

mance benefits of the alternative to cache-based accesses:

the use of DMA engines to move data to/from main memory

thus freeing up the processor. These asynchronous transfer
versions (abbreviated AT in the rest of the paper) can

potentially hide expensive off-chip memory access penalties

by allowing useful computations to proceed in parallel with

background memory transfers. In such an implementation,

there are one or more local scratch-pad memories that are

typical small but fast SRAM memories that the processor

can access far more quickly than off-chip DRAM. The

DMA engines are programmed to transfer data from off-chip

DRAM into these scratch-pad memories.

The effectiveness of this overlap of transfers with compu-

tation depends on the severity of the memory access penalty

in the CB version and how well this penalty can be hidden

in the AT version. In this work, we examine this question

by thoroughly evaluating the benefits of the AT versions

across several directed micro-benchmarks as well as image

processing kernels.

A. Our Contributions

In this paper, we make the following contributions:

• We develop and validate an analytical model of per-

formance that estimates the benefit of asynchronous

data transfers in streaming workloads executing on

media processors. This model provides a framework

for understanding performance issues in CB and AT
versions as well as for identifying the impact of various

parameters (workload as well as underlying hardware)

and their interactions on performance. The model is

demonstrated to achieve high accuracy (average error

6%) in estimating the speed-up of the AT versions over

CB versions of kernels.

• Using the model, we derive an expression for the

optimal DMA transfer size.

• Using the Texas Instruments KeyStone II multi-DSP

SOC platform [10], we evaluate the performance im-

provement due to asynchronous data transfers using

both directed micro-benchmarks as well as a variety of

image processing kernels. We find that asynchronous

data transfers can improve performance by as much as

5× with an average improvement of 40% over cache-

based kernels.

II. MOTIVATION

In this section, we discuss the motivation for evaluating

asynchronous transfers. For illustration, we use the straight-

forward vector-summation kernel whose code snippet is

shown in Figure 1. The kernel sums up the elements of a

vector and as such this cache-based implementation enjoys a

1This is due to the interleaving of requests from multiple cores resulting
in adversely affecting the row-buffer locality in memory.

Figure 1: Vector Summation Kernel - Cache-based Imple-

mentation

high cache hit rate (assuming 64B cache blocks in the L1D,

and 4B elements, its L1D hit rate is 93.75%). The execution

timeline of such a cache-based kernel is depicted by the

top portion of Figure 3. The kernel alternates between short

bursts of computation (denoted ‘C’) and memory accesses

(denoted ‘M’) with a total execution time that is a sum of the

total computation carried out plus the total memory access

time. High cache miss rates and/or high off-chip memory

access times can cause the kernel to consume a large number

of processor cycles.

Asynchronous transfers can potentially hide these exposed

memory access penalties. The async work group copy [11]

OpenCL API initiates asynchronous data transfer between

local and global memories by programming an on-chip

DMA engine and returns control back to kernel execution.

The function is executed commonly across a work-group and

is expected to be used to transfer data for all the work-items
in the work-group. The kernel can continue to perform useful

computation and subsequently synchronize with the data

transfer via the wait group events [12] API. If the durations

of computation and data transfer match, then nearly all of

the data transfer overhead can be hidden behind computa-

tion and thereby the overall kernel execution time can be

reduced. This is shown in the bottom portion of Figure 3.

The blocks marked with an ‘S’ denote the time spent in

transfer control (DMA setup and completion). These blocks

constitute overheads of asynchronous implementations.

Since computation proceeds concurrently with data trans-

fers, it necessitates use of multiple buffers – one set of

buffers for computation to access, and a second set of

buffers that are used for data transfers - double-buffering
scheme [13]. As shown in Figure 3, the asynchronous

version has to be “primed” for computation by fetching

an initial chunk of data from global memory into a local

scratch-pad. Once the initial chunk has been fetched, the

transfer of the next chunk is initiated followed by the

computation on the available chunk. Once the computation is

completed, it waits for the next chunk to become available

before continuing. There is a similar “epilog” at the end.

136

Figure 2: Vector Summation Kernel - Asynchronous Imple-

mentation

Figure 3: Timelines of Cache and Async Kernels

In Figure 2, it may be observed that each iteration of the

outermost loop (loop control variable j), one half of the

scratch buffer is used for computation and the other half for

transfers.

As is evident, the chunk size of computation/transfer plays

a key role in the overall efficiency of an asynchronous

implementation. Too small a chunk size incurs the transfer

setup overhead a large number of times. Too large a chunk

size leads to large sequential overheads in the prolog and

epilog portions of the kernel. We executed both the CB
and AT versions of the vector-summation kernel (fvec-sum)

and measured the speed-up obtained by the AT version at

different chunk sizes. While details of our experimental

evaluation are presented in Section IV, we note that these

experiments were run on one of the eight DSPs present

in the Texas Instruments Keystone-II platform [10]. The

performance of the AT versions (in CPU cycles) at different

chunk sizes is plotted in Figure 4. The horizontal line is the

cycle count of the CB version. At a chunk size of 16KB,

the AT version achieves the highest speed-up of 48% over

Figure 4: fvec-sum: Performance of the AT version at dif-

ferent chunk sizes

Parameter Description
tC Computation time of the Kernel

tCache
M Exposed memory access time of the CB Kernel

tAsync
M Total memory transfer time of the AT Kernel

m Average number of CPU Cycles
between consecutive memory accesses

tS Asynchronous transfer overhead per each transfer
h1 L1D Cache hit rate
h2 L2 Cache hit rate
l1 L1D Cache hit latency
l2 L2 Cache hit latency

tDDR DDR (Off-Chip) memory access time per cache miss
de DMA transfer efficiency relative to cache
n Number of DMA chunks
p∗ Average memory access penalty

t∗Cache Total execution time of the cache-based kernel

t∗Async Total execution time of the async transfer-based kernel

Table I: Notation used in the analytical models

the CB version. To emphasize, this speed-up is achieved in a

highly cache-friendly algorithm and thus motivates a deeper

analysis of the benefits of using asynchronous transfers in

such media processors. Next we develop a performance

model to predict the estimated benefits of the AT version

as a function of key system parameters.

III. PERFORMANCE EVALUATION MODEL

First we present a speed-up model to understand the

extent of improvements achievable with AT versions. We

then develop a model for estimating good DMA chunk sizes

in single core kernels in Section III-B. This is followed by

a generalization to cover multiple cores in Section III-C.

Before we develop these models, we introduce some notation

that is defined in Table I. All parameters in units of time are

measured in CPU cycles. Parameters marked with a ∗ are

evaluated using other parameters listed in the Table.

A. Speed-up Model

It is easy to see that the total execution time of the cache-

based kernel can be approximated by: tCache ≈ tC+tCache
M .

This approximation assumes that cache-based loads can

not be overlapped with computation. For cores that can

(partially) hide the latencies of cache-based loads, it is

assumed that the parameter tCache
M is suitably adjusted to

137

account for the exposed penalty of such loads. This reflects

typical media processor implementations wherein features

such as out-of-order execution, branch prediction and hard-

ware multi-threading are omitted in favor of sophisticated

computing units. We say that the kernel is Compute-Bound
if tC ≥ tCache

M , and Memory-Bound otherwise.

By use of asynchronous transfers, if the total asyn-

chronous transfer time tAsync
M is overlapped with useful

computation, then the total execution time tAsync can be

approximated as: tAsync ≈ max(tC , t
Async
M). This assumes

ideal conditions – i.e., no DMA control overhead. For

illustrating achievable speed-up, this approximation suffices.

In the detailed model developed in the next Section, we

account for this control overhead. The speed-up S achieved

by the AT version is given by:

S =
tCache

tAsync
=

tC + tCache
M

max(tC , t
Async
M)

(1)

Using this Equation, we can develop lower and upper-bounds

for the achievable speed-up of the he AT version over the CB
version. In general the achieved speed-up of the AT version

over the CB version depends on the Compute-Bound vs

Memory-Bound nature of both the AT and CB versions. The

four scenarios that arise and the resulting expected speed-

ups are listed in Table II. S denotes the expected speed-up

in each scenario. These cases are described briefly below.

Both CB and AT versions are Compute-Bound: From

Equation 1, since tC > tCache
M and tC > tAsync

M , it follows

that 1 ≤ S ≤ 2.

CB is Memory-Bound and AT version is Compute-
Bound: Using Equation, it can be seen that S =
tC+tCache

M

tC
= 1+

tCache
M

tC
> 2. Thus arbitrarily large speed-ups

become possible depending on the value of
tCache
M

tC
.

CB is Compute-Bound and AT version is Memory-
Bound: In the scenario that a Compute-Bound kernel in the

cache version turned into a Memory-Bound kernel in the

asynchronous version (i.e., tAsync
M ≥ tC ≥ tCache

M), then

the achievable speed-up is ≤ 2 and could even be ≤ 1 if

tAsync
M � tCache

M . This is highly unlikely in practice since

bulk DMA transfers tend to be more efficient than cache

accesses. Such a situation might arise due to excessive DMA
transfers compared to transfers made in the cache version.

It suggests that the kernel is not well suited to an AT imple-

mentation (such as accesses not being contiguous thereby

requiring too many small DMAs, or wasteful transfers for

example). Among the four scenarios, this is the only scenario

in which AT versions could be detrimental.

Both CB and AT versions are Memory-Bound: In this

scenario (i.e., tCache
M ≥ tC , t

Async
M ≥ tC), the expected

speed-up depends on the relative values of the two ratios,
tC

tAsync
M

and
tCache
M

tAsync
M

. The first ratio – tC
tAsync
M

is ≤ 1 since the AT

version is Memory-Bound, while the second ratio –
tCache
M

tAsync
M

is

Speed-up Compute-Bound Memory-Bound
CB version CB version

Compute-Bound 1 ≤ S ≤ 2 S > 2
AT version

Memory-Bound 0 < S ≤ 2 Generally S ≥ 1.
AT version (unlikely Depends on actual

scenario) value of tC , tCache
M , tAsync

M

Table II: Speed-up of AT versions

generally ≥ 1 assuming that asynchronous memory transfers

are more efficient. We can only conclude that the speed-up

is ≥ 1.

Having set up the context in which to view the relative

performances of AT and CB versions, next we develop a

model for estimating good DMA chunk sizes using values of

tCache and tAsync estimated using key system and workload

parameters. First we develop this model assuming a single

core executing the kernel followed by an extension to cover

multi-core kernels.

B. Estimating Good DMA Chunk Sizes

In this section, our goal is to develop a framework for

determining if the AT version can out-perform the CB
version and to determine the optimal transfer sizes in the AT
version. Note that the purpose of the model is only to provide

insight into what the key governing parameters and their

interactions are, and not to provide fully-tuned/optimized

results for arbitrary kernels.

First, we recall that the total execution of the CB version

is given by: tCache = tC+tCache
M . The total memory penalty

tCache
M is a function of the rate m at which memory accesses

occur, their hit rates h1, h2 in the caches and the off-chip

memory penalty, tDDR. The average memory penalty p per

access is given by: p = h1 ·l1+(1−h1)·h2 ·l2+(1−h1)·(1−
h2) · tDDR. This is just the weighted average of the access

latencies associated with L1D, L2 and DDR. These are

workload-specific values. Since there is a memory access

every m cycles, the total memory access penalty, tCache
M ,

may be expressed as: tCache
M = tC ·p

m .

Thus we can determine if the kernel is Compute-Bound
or not by the check: tC ≥ tC ·p

m . This simplifies to: m ≥ p.

In other words, a CB version is Compute-Bound if there

are atleast p cycles of computation between successive

memory accesses. Thus, using kernel-specific values of these

parameters, the model can be used to decide if the kernel

is Compute-Bound or Memory-Bound. The total execution

time of the CB version may now be expressed as:

tCache = tC + tCache
M (2)

= tC +
tC · p
m

(3)

= tC(1 +
p

m
) (4)

For the AT version, we assume that there is a non-overlapped

initial setup (tS) and transfer time (tInit) followed by

138

overlapped transfers and computations (refer Figure 3). The

transfer time tAsync
M is the total time taken to transfer the

same amount of data as that accessed by the CB version. If

there are n transfers made, and assuming that all transfers

are of equal size, we can write: tInit =
tAsync
M

n . That is, the

time for the initial non-overlapped transfer is an nth of the

total transfer time. Note that, for simplicity of the model,

we assume that the scratch-pad memory has the capacity to

store the data needed for large transfers.

Owing to increased transfer efficiency of large DMA

transfers, tAsync
M is expected to be ≤ tCache

M . Thus, us-

ing the DMA transfer efficiency parameter de (generally,

0 < de < 1), we estimate tAsync
M as: tAsync

M = de · tCache
M .

If there are n transfers made, then the total transfer setup

overhead is: n · tS . Thus the total computation is estimated

to be: tAsync
C = n · tS + tC (since the total computation

time now includes the cost of the setup overhead). The total

execution time of the AT version may now be expressed as:

tAsync = max(tAsync
C + tInit, n · tS + tAsync

M + tC
n).

Compute-Bound AT Version Here, we assume that the

AT version is Compute-Bound. Thus:

tAsync = tAsync
C + tInit (5)

= n · tS + tC +
tAsync
M

n
(6)

= n · tS + tC +
de · tCache

M

n
(7)

= n · tS + tC +
de · tC · p
m · n (8)

= n · tS + tC(1 +
de · p
m · n) (9)

We would like to seek a condition on n for the AT version

to be more efficient than the CB version. Thus we seek that:

tAsync < tCache. Substituting for the expressions of tCache

and tAsync using Equations 4 and 9, we get:

n · tS + tC(1 +
de · p
m · n) < tC(1 +

p

m
) (10)

This equation represents the condition for tAsync to be better

(smaller) than tCache as a function of several parameters.

Solving for n: Observe that Equation 9 is quadratic in

n, the number of transfers. If all the other parameters are

known, then it is possible to solve for the desired value of n
that minimizes tAsync

2. In practice, this ideal value n∗ may

not be feasible due to implementation aspects (too small a

scratch-pad, for example).

In Section V, we show that such an optimal number

of transfers indeed exists and that the model estimates n∗

accurately. At the optimal n∗, the speed-up S achieved by

2It is noted that finding the best n∗ is equivalent to finding the best DMA
transfer chunk size.

the AT version is given by:

S∗ =
tC(1 +

p
m)

n∗ · tS + tC(1 +
de·p
m·n∗)

(11)

Memory-Bound AT Version We proceed with the devel-

opment of the condition for the Memory-Bound AT version

to outperform the CB version along similar lines. The total

execution time of the AT version is now given by:

tAsync = n · tS + tAsync
M +

tC
n

(12)

= n · tS + de · tCache
M +

tC
n

(13)

= n · tS + de · tC · p
m

+
tC
n

(14)

= n · tS + tC · (de · p
m

+
1

n
) (15)

Equation 12 follows from the assumption that the AT version

is Memory-Bound. Thus the total execution time is a sum of

the total transfer setup time, n · tS , the total transfer time,

tAsync
M and the time for the last (non-overlapped) chunk of

compute, tC
n . Requiring that tAsync < tCache leads to the

inequality:

n · tS + tC · (de · p
m

+
1

n
) < tC(1 +

p

m
) (16)

As in the preceeding Section, this leads to a quadratic

in n and the optimal value that minimizes tAsync can be

determined from the roots of the quadratic.

The speed-up S∗ obtained by the AT version at the

optimal value n∗ is given by:

S∗ =
tC(1 +

p
m)

n∗ · tS + tC · (de·p
m + 1

n∗)
(17)

Putting it together: In summary, the speed-up model uses

workload-specific parameters (tC , h1, h2, l1, l2, tDDR, and

m) and platform-specific parameters (tS and de) to classify

the workload as Compute-Bound or Memory-Bound in both

the CB and AT versions. After classification, the execution

times tCache and tAsync are appropriately estimated. The

model estimates an optimal value of tAsync by identifying

the best value of n, the number of DMA transfers initiated

in the AT version. This enables the estimation of the best

speed-up of the AT version over the CB version.

C. Extension to Multi-Core

We develop a simple extension to model multi-core con-

figurations. Assuming that kernel computation and memory

accesses are uniformly distributed across all the available

C cores, the work performed by each kernel scales by a

factor of 1
C . However, the use of shared memory and on-chip

network resources causes congestion and reduced efficiency

of memory accesses. While a single-core kernel is likely to

obtain higher row-buffer hit rates and fewer bank conflicts

in the DDR main memory, the multi-core kernel is likely

139

Name Description Parameters
fvec-sum Summation of a floating-point vector 256K elements
cvec-sum Summation of a vector of characters 256K elements
fvec-copy Copy a floating-point vector 256K elements
cvec-copy Copy a vector of characters 256K elements

Table III: Listing of Micro-kernels

to suffer from greater row-buffer misses and bank conflicts.

Thus while the computation per core reduces from tC to tC
C ,

the average memory access penalties tend to worsen. This

is taken into account in the model by suitably adjusting the

off-chip memory access timing parameter tDDR, as well as

the DMA transfer efficiency factor de.

As our results indicate, this simple extension provides a

reasonably good approximation of the behavior observed in

multi-core systems.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance benefit of asynchronous

data transfers using both micro-kernels as well as real-

istic image processing kernels on the Texas Instruments

Keystone-II multi-core platform [10]. We describe the de-

tails of our workloads, hardware platform and performance

metrics below.

A. Workloads

We used two types of workloads for evaluation: i) directed

micro-kernels that emphasize the impact of asynchronous

data transfers, and ii) image processing kernels that represent

realistic workloads. Directed micro-kernels are listed in

Table III and the image processing kernels in Table IV.

Each kernel is implemented in two flavors – a cache-based

implementation (denoted by a cache subscript) as well as an

asynchronous data transfer based implementation (denoted

by a async subscript).

1) Micro-Kernels: The first two micro-kernels – fvec-
sum and cvec-sum are cache-friendly kernels dominated by

load operations in the cache-based versions. In the async
version, these kernels leverage the async work group copy
API to move chunks of data into a local scratchpad using

the double-buffering technique. The next two kernels –

fvec-copy and cvec-copy have equal amounts of loads and

stores and thus reveal the performance benefits of using

asynchronous transfers.

As predicted by our model in Section III, the chunk size

of transfers used in the async version matters – small sizes

incur too much DMA control overhead while very large sizes

suffer from the serial overhead of the initial transfer whose

time can not be hidden. Unless otherwise stated, we use a

chunk size of 16KB per async work group copy call.

2) Image Processing Kernels: Image processing kernels

listed in Table IV are low-level primitives used by vision and

imaging applications. In general, they exhibit cache-friendly

behavior (with the exception of the histogram kernels which

Name Description Parameters
Image Diff S Image Difference Img. Size: 640X360
Image Diff B Image Difference Img. Size: 1920X1080

Max S Find max. pixel value Img. Size: 640X360
Max B Find max. pixel value Img. Size: 1920X1080

Histogram S Histogram of pixel values Img. Size: 640X360
Histogram B Histogram of pixel values Img. Size: 1920X1080
Gaussian S Gaussian filter over image Img. Size: 640X360
Gaussian B Gaussian filter over image Img. Size: 1920X1080

Image Resize B Image Resize Input Image: 1920X1080
Output Image: 960X540

Imaging App Sample Application: Input Image: 1920X1080
downsizing, noise
filter, histogram

Table IV: Listing of Image Processing Kernels

Figure 5: Overview of TI Keystone-II Multi-Core SoC

perform writes to an output array using pixel values to

compute the array index). They also have higher compute-

to-memory ratios as compared to the micro-kernels.

For completeness, we developed an imaging application

that performs a series of computations: image downsizing

(from 1920×1080 to 640×360), noise reduction via a 3×3
Gaussian filter and finally a 256-bins histogram computation.

The application is implemented as three OpenCL kernels that

are invoked in a pipeline.

B. Evaluation Platform

We evaluated the performance of the cache and async
versions on the Texas Instruments Keystone-II multi-core

SOC [10]. A diagrammatic overview of the architecture is

presented in Figure 5.

The SOC comprises 4 ARM Cortex-A15 cores and 8

C66x [14] DSP cores. In our study, we use only the DSP

cores as OpenCL targets. These DSP cores are 8-way VLIW

(Very Long Instruction Word) cores operating at a peak of

1.228GHz. Each core has a 2-level cache hierarchy [15]

comprising separate level-1 instruction and data caches and

a unified level-2 cache. The level-2 memory is configurable

– it can be used as a full cache or a full scratch-pad or as

a combination of both. Across the DSP cores, the caches

are not coherent. Thus to avoid false-sharing, the caches

are configured for write-through. At the main memory con-

140

Platform Cores, Freq. Caches Off-Chip
TI K2H (DSP) 8 cores, L1:32KB cache DDR3 64-bit

1.228 GHz L2: 1MB 1333MHz
Used as:

1MB local, or
768KB cache

Table V: Hardware Configuration

troller, such writes are implemented by atomic read-modify-
write operations on the memory. The cores access off-chip

DDR3 memory via two 64-bit data channels operating at a

peak of 800MHz (i.e., 1600M transfers per second). In our

evaluation, we used only one 64-bit data channel operating

at a speed of 666MHz (i.e., 1333M transfers per second).

Key parameters of this platform are summarized in Table V
3.

The DMA engine [16] on this platform is capable of 1D

and 2D transfers, and supports both pipelined and concurrent

transfers between on-chip and off-chip memories.

The DSP has inherently limited hardware parallelism (it

does not support multiple hardware threads of execution and

has SIMD width of upto 8) and thus benefits from kernels

that perform more work in each work-item as compared

to kernels that are written for highly parallel architectures

such as GPUs wherein each work-item performs a smaller

amount of work. Further, as generally observed on a va-

riety of platforms, dispatching more work-groups than the

available compute units increases dispatching and scheduling

overheads. Thus we restrict our attention to two types of

kernel compositions, both of which map efficiently onto the

underlying hardware platform: one, single-core kernels that

are comprised of just one work-group and one work-item;

and two, multi-core kernels that are comprised of 8 work-
groups and one work-item per work-group. Having just one

work-item per work-group exposes significant pipelining,

loop optimization and VLIW scheduling opportunities to

the compiler. Single-core kernels reveal the benefits of

asynchronous transfers when main memory is dedicated

to just one core (lower access penalties), while multi-core

kernels reveal the benefits of asynchronous transfers when

main memory is shared across all the 8 cores.

C. Parameters used by the Model

The parameters tC ,m, h1, h2 and tDDR required by

the model are obtained by turning on hardware profiling

while the kernel executes. We remark that tDDR is kernel-

dependent since the memory penalty depends on the conges-

tion at the main memory, the spatial locality of accesses, as

well as other factors such as bank conflicts and the frequency

of read-to-write turn-arounds. The L1D access penalty l1
is set to 0 and L2 access penalty l2 set to 5 cycles. The

3Additionally, the chip has 6MB on-chip memory that is shared by all
the cores (shown as MSM SRAM in the Figure). In our experimental study,
we did not use this on-chip resource.

Figure 6: Validation of the Model on the Compute-Bound
Kernel Max B

transfer setup overhead tS is set to 870 CPU cycles and the

DMA efficiency factor de set to 0.17 based on experimental

observation across a range of DMA transfer sizes.

D. Metrics

For each kernel workload W described in Section IV-A,

we collect cycle counts of execution in both the cache
and async versions, denoted Wcache and Wasync respec-

tively. The performance improvement is measured as the

percentage improvement of Wasync over Wcache (given by:(
Wcache−Wasync

Wcache

)
· 100). To ensure consistent results, the

caches are flushed before kernel execution and results are

averaged over 5 runs for each workload. All the results

reported in Sections V-B and V-C are actual results obtained

on the evaluated platform.

V. RESULTS AND DISCUSSION

We first present a validation of the performance model and

its batch-size estimation technique. Next we present detailed

results obtained on the evaluation platform using only one

of the 8 DSPs followed by the results obtained on the 8-core

version.

A. Model Validation

We validated the performance model for its accuracy in

estimating efficient chunk sizes in both Compute-Bound
and Memory-Bound kernels. The Max B is a Compute-
Bound kernel (i.e., tC > tCache

M), and as per Table II,

the AT version can not achieve speed-up in excess of 2.

Figure 6 plots the observed (actual) execution time of the

CB version, the observed (actual) execution time of the

AT version and the model-estimated execution time of the

AT version at different numbers of asynchronous transfers

(model parameter n). The model deviates from the observed

performance by less than 1%. The best speed-up achieved

(actual) is ≈ 1.05× which occurs at n = 24. The model’s

prediction is in agreement with this result.

A similar validation is performed on the Memory-Bound
kernel, fvec copy, reported in Figure 7. As per Table II, the

AT version can result in arbitrarily large speed-up. Indeed,

141

Figure 7: Validation of the Model on the Memory-Bound
Kernel fvec copy

we observe the best speed-up of ≈ 2.5× achieved by the

AT version at n = 504. Further, the model has less than 7%
error in estimating overall execution time, tAsync, compared

to the observed execution time. Similar results are observed

in other workloads (not shown due to space constraints). On

average, the model has an error of 6% in estimating the

speed-up obtained by the AT versions over CB versions.

These results indicate that the model has sufficiently high

accuracy to permit its use for a quick evaluation of the

benefits of using asynchronous transfers.

It may be noted, however, that the results presented in the

next two Sections are actual experimental results obtained

on the evaluation platform.

B. Single-Core Results

For illustration, we discuss the performance benefits ob-

served on micro-benchmarks first followed by a discussion

of the performance improvements observed in image pro-

cessing kernels.

1) Micro-benchmarks: Figure 8 plots the performance

improvement obtained by the AT version of each micro-

benchmarks over the corresponding CB version when the

benchmarks were mapped to run on only one DSP. These

single-core versions reveal the opportunities for performance

improvement when the entire available main memory band-

width is made available to a single core. Both the floating-

point kernels gain significantly – nearly 50% or more. The

character data type kernel – cvec-sum – gains the least

(≈ 7%) owing to its very high L1D and L2 cache hit

rates reducing the opportunities for saving exposed mem-

ory transfer penalties5. Overall, despite the high cache hit

rates of these kernels, the AT versions provide significant

performance improvement by virtue of the efficient DMA
transfers.

2) Image processing kernels: Performance improvements

obtained by the AT versions in case of image processing

kernels are plotted in Figure 9. We observe an average

4The actual and model-estimated execution times look nearly flat due to
very little variation in execution time with varying n.

5On the otherhand, cvec-copy sees much higher benefit owing to the
overhead of frequent writes that leads to a performance bottleneck in the
CB version.

Figure 8: Performance of Asynchronous Transfers in Micro-

Benchmarks on Single-Core DSP Platform

Figure 9: Performance of Asynchronous Transfers in Imag-

ing Kernels on Single-Core DSP Platform

performance improvement of 14% in these workloads with

the Gaussian B kernel showing a 3X speed-up.

It can also be observed that the speed-ups are generally

higher in workloads that load more data – such as the

Image Diff and Gaussian kernels which load two input

image pixels per output pixel. This shows that asynchronous

transfers are more effective in kernels that have higher

memory bandwidth demand.

C. Multi-Core Results

In this Section, we evaluate the improvements seen in

AT versions of OpenCL kernels mapped to leverage all of

the eight DSP cores available on the TI Keystone-II device.

Here, work-groups are mapped across these cores and can

thus leverage the concurrency of 8 DSP cores. The cores

however share the off-chip DDR memory via a single 64-bit

channel and thus frequent off-chip accesses can potentially

create contention at the main memory.

Figure 10 plots the performance improvements seen by

the micro-benchmarks (the baselines used here are the

corresponding cache versions of kernels that run on all

8 cores). The kernels that perform writes (fvec copy and

cvec copy) show improvements of over 3.5× over cache

versions. These are mainly due to the benefits of removing

the frequent interference between cache loads and writes

initiated by each core in the CB version. Since the caches are

write-through, frequent writes fill up write buffers quickly

and subsequent writes/loads cause cores to stall. Further,

142

Figure 10: Performance of Asynchronous Transfers in

Micro-Benchmarks on 8-Core DSP Platform

Figure 11: Performance of Asynchronous Transfers in Imag-

ing Kernels on 8-Core DSP Platform

at the shared main memory, the reads and writes from

different cores conflict causing increased row-buffer misses

and associated access penalties. The AT versions reduce this

interference substantially by allowing each DMA request to

be efficiently serviced through the memory hierarchy.

Figure 11 plots the performance improvements seen in

image processing kernels (baselines being the correspoding

cache versions that run on all 8 cores). Substantial per-

formance improvements are observed in all of the kernels

with average improvement of 65%. In all the kernels except

Max S and Image Resize B, the AT versions improve per-

formance by over 2X . Referring to our speed-up discussion

in Section III-A and Table II, we can infer that these

kernels are Memory-Bound in the cache version. Thus the AT
implementations of these kernels have successfully hidden

the memory penalty enabling speed-ups ≥ 2. While the

Image Resize B kernel hardly achieves any improvement in

the single-core configuration (refer Figure 9), it is able to

gain over 20% improvement in performance in the multi-

core configuration.

On the end-to-end imaging application, the AT ver-

sion showed a 24% improvement in performance over the

Compute-Bound version.

D. Discussion

Low-level image processing kernels such as those consid-

ered in this work perform small amounts of computation per

pixel. Such kernels can easily become Memory-Bound in the

cache versions. For instance, among multi-core kernels, the

Image Diff B kernel, which computes (absolute) differences

between pairs of pixel values, is Memory-Bound. On the

otherhand, the Max S kernel that loads just one image and

finds the maximum pixel value in the image is Compute-
Bound. Thus the nature of the cache-based kernel can be

quite sensitive to the specifics of the kernel implementation

and can quickly change from Compute-Bound to Memory-
Bound.

It should be noted that the benefits of AT versions are

a result of the characteristics of the underlying processor

architecture – single-threaded cores that are inherently lim-

ited in their ability to hide long latency stalls arising from

off-chip memory accesses. On such cores, it is important

to reduce stall penalty and background transfers provide a

very effective means of achieving this objective. Further,

multi-core configurations comprising such cores can get

adversely affected by the interference effects caused on

shared resources. In general, the AT versions provide a

more robust performance behavior and are less sensitive to

memory penalties. The AT versions leverage spatial locality

in row-buffer accesses and incur fewer bank conflicts in off-

chip accesses resulting in more efficient bulk data transfers.

Thus these techniques have a much bigger benefit when

applied to multi-core kernels as the results in Section V-C

suggest. While the average improvement of AT versions is

< 15% in single-core, the average improvement is greater

than 65% in multi-core as reported in Figures 9 and 11.

On the other hand, architectural features such as support

for multiple hardware threads, low-latency thread switching,

memory prefetching, and out-of-order execution can allevi-

ate the severity of cache-based off-chip memory accesses.

A study of the benefits and challenges associated with

leveraging these features in hiding the observed memory

latency in OpenCL kernels is beyond the scope of this paper.

VI. RELATED LITERATURE

Use of DMA controllers and double-buffering schemes is

not new. Works in [17], [18] and [19] discuss the use

of these mechanisms in systems with explicitly managed

scratch-pad resources. Our work aims to demonstrate the

significant performance benefit of these mechanisms in the

context of the popular programming model. The perfor-

mance model proposed in our work reveals the key govern-

ing parameters affecting overall performance and provides a

quantitative framework for analysis of OpenCL workloads.

The work in ROS-DMA [13] proposes a model to estimate

good DMA batch sizes, but does not provide a comparison

with cache-based implementations. It is also restricted to a

single core and as such does not address efficiency issues in

multi-core architectures.

Several works have modeled the performance of GPU

architectures [20]–[22]. These prior models are focused on

identifying and modeling critical architectural elements in

the context of throughput-oriented architectures. Further,

143

they do not compare the benefits of asynchronous transfers

over cache-based kernels.

The works in DBDB [23] and PolyMage [24] are compiler

techniques for obtaining optimized executables for different

hardware platforms. Our model could be integrated into

these works to let the compiler automatically generate AT
versions where appropriate.

VII. CONCLUSION

In this paper, we examined the performance benefits of the

use of the async work group copy and wait group events
OpenCL APIs to initiate background memory transfers using

DMA engines in a typical media processor platform. We

developed a performance model to assess the impact of

various key governing parameters and showed how large

speed-ups are possible when a memory-bound kernel in the

cache-based version turns into a compute-bound kernel in

the asynchronous-transfers version due to highly efficient

DMA transfers. We experimentally observed speed-ups of

upto 5× and average performance improvement of 40%
in image processing kernels running on an 8-core DSP

platform.

REFERENCES

[1] Khronos, “The open standard for parallel programming
of heterogeneous systems,” 2009. [Online]. Available:
https://www.khronos.org/opencl/

[2] Intel, “OpenCL Technology.” [Online]. Available: https:
//software.intel.com/en-us/intel-opencl

[3] AMD, “OpenCL Zone.” [Online]. Available: http://developer.
amd.com/tools-and-sdks/opencl-zone/

[4] NVIDIA, “OpenCL.” [Online]. Available: https://developer.
nvidia.com/opencl

[5] ARM, “ARM Mali OpenCL SDK.” [Online]. Avail-
able: http://malideveloper.arm.com/develop-for-mali/sdks/
mali-opencl-sdk/

[6] Imagination, “Imaginations PowerVR Series6 is the first
mobile GPU to pass OpenCL 1.2 conformance with
Khronos.” [Online]. Available: http://www.imgtec.com/news/
detail.asp?ID=858

[7] TI, “OpenCL.” [Online]. Available: http://processors.wiki.ti.
com/index.php/OpenCL

[8] ISO, “ISO C Standard 1999,” Tech. Rep., 1999.
[Online]. Available: http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1124.pdf

[9] M. Akhloufi and A. Campagna, “OpenCLIPP: OpenCL
Integrated Performance Primitives library for computer
vision applications,” Proc. SPIE Electronic Imaging 2014,
Intelligent Robots and Computer Vision XXXI: Algorithms
and Techniques, 2014. [Online]. Available: https://github.
com/CRVI/OpenCLIPP

[10] TI, “66AK2H06: Multicore DSP+ARM KeyStone II System-
on-Chip (SoC),” 2014. [Online]. Available: http://www.ti.
com/product/66ak2h06

[11] Khronos, “async work group copy,” 2009. [Online].
Available: https://www.khronos.org/registry/cl/sdk/1.0/docs/
man/xhtml/async work group copy.html

[12] ——, “wait group events,” 2009. [Online]. Avail-
able: https://www.khronos.org/registry/cl/sdk/1.0/docs/man/
xhtml/wait group events.html

[13] C. Zinner and W. Kubinger, “ROS-DMA: A DMA Double
Buffering Method for Embedded Image Processing with
Resource Optimized Slicing.” in IEEE Real Time Technology
and Applications Symposium. IEEE Computer Society, 2006.

[14] TI, “TMS320C66x DSP CPU and Instruction Set User
Guide,” 2010. [Online]. Available: http://www.ti.com/lit/ug/
sprugh7/sprugh7.pdf

[15] ——, “TMS320C66x DSP CorePac User Guide,”
2013. [Online]. Available: http://www.ti.com/lit/ug/sprugw0c/
sprugw0c.pdf

[16] ——, “KeyStone Architecture Enhanced Direct Memory
Access (EDMA3) Controller,” 2015. [Online]. Available:
http://www.ti.com/lit/ug/sprugs5b/sprugs5b.pdf

[17] S. Saidi, P. Tendulkar, T. Lepley, and O. Maler, “Optimiz-
ing two-dimensional DMA transfers for scratchpad based
MPSoCs platforms,” Microprocessors and Microsystems -
Embedded Hardware Design, no. 8, 2013.

[18] ——, “Optimizing Explicit Data Transfers for Data Parallel
Applications on the Cell Architecture,” ACM Trans. Archit.
Code Optim., 2012.

[19] S. Schneider, J.-S. Yeom, and D. S. Nikolopoulos, “Pro-
gramming multiprocessors with explicitly managed memory
hierarchies.” IEEE Computer, 2009.

[20] S. Hong and H. Kim, “An Analytical Model for a GPU
Architecture with Memory-level and Thread-level Parallelism
Awareness,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ser. ISCA ’09, 2009.

[21] Y. Zhang and J. D. Owens, “A quantitative performance
analysis model for GPU architectures.” in HPCA, 2011.

[22] M. Lin, R. Chamberlain, and K. Agrawal, “Performance
modeling for highly-threaded many-core GPUs,” in IEEE
25th International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP), 2014.

[23] T. Liu, H. Lin, T. Chen, J. K. O’Brien, and L. Shao, “DBDB:
Optimizing DMA Transfer for the Cell Be Architecture,”
in Proceedings of the 23rd International Conference on
Supercomputing, ser. ICS ’09, 2009.

[24] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “PolyMage:
Automatic Optimization for Image Processing Pipelines,”
in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’15, 2015.

144

