
Improving Node-level MapReduce Performance
using Processing-in-Memory Technologies

Mahzabeen Islam1, Marko Scrbak1, Krishna M. Kavi1,
Mike Ignatowski2, and Nuwan Jayasena2

1 University of North Texas, USA
{mahzabeenislam,markoscrbak}@my.unt.edu,krishna.kavi@unt.edu

2 AMD Research - Advanced Micro Devices, Inc., USA
{mike.ignatowski,nuwan.jayasena}@amd.com

Abstract. Processing-in-Memory (PIM) is the concept of moving com-
putation as close as possible to memory. This decreases the need for the
movement of data between central processor and memory system, hence
improves energy efficiency from the reduced memory traffic. In this paper
we present our approach on how to embed processing cores in 3D-stacked
memories, and evaluate the use of such a system for Big Data analytics.
We present a simple server architecture, which employs several energy
efficient PIM cores in multiple 3D-DRAM units where the server acts
as a node of a cluster for Big Data analyses utilizing MapReduce pro-
gramming framework. Our preliminary analyses show that on a single
node up to 23% energy savings on the processing units can be achieved
while reducing execution time by up to 8.8%. Additional energy savings
can result from simplifying the system memory buses. We believe such
energy efficient systems with PIM capability will become viable in the
near future because of the potential to scale the memory wall.

Keywords: Processing-in-Memory, 3D-DRAM, Big Data, MapReduce

1 Introduction

While the idea of moving processing to memory (i.e., Processing-in-Memory,
PIM) is not new [13, 19, 6, 10] the advent of 3D-stacked DRAMs [2, 4, 9] which
include dedicated logic dies within a DRAM package, have generated renewed
interest in PIMs [19, 20, 12, 15]. Current research shows that enough free silicon
area is available within the logic layer to permit the inclusion of computational
units. PIM architectures are particularly beneficial for data intensive and mem-
ory bounded applications that do not necessarily benefit from the conventional
cache hierarchy [26]. PIM cores can access memory using faster, high bandwidth
TSVs (Through Silicon Via) [15, 20, 24] instead of conventional or specialized
high bandwidth memory buses that consume significant energy for transferring
data between DRAM and off-chip processing cores [4]. Because of this obser-
vation we favor PIMs over a heterogeneous multicore system where a number
of small cores (or GPUs) are integrated with powerful main CPUs since they

2 MapReduce using Processing-in-Memory Technologies

require excessive amounts of data transferred from/to off-chip DRAM units.
Nonetheless, several challenges remain. Among the key issues to investigate in-
clude the types of computing cores and how many of them to include in the logic
layer to fully utilize available (3D) DRAM bandwidth while not exceeding power
budgets.

In this paper, we propose a new server architecture with a number of simple
in-order single-issue cores as PIM cores. We describe the roles and responsibilities
of the main processor and PIM cores and our assumptions about the memory.
We also propose modifications to MapReduce framework in order to optimize
this unconventional architecture specifically for Big Data processing. In Big Data
analysis, generally clusters of large number of commodity machines are used in
conjunction with a standard MapReduce framework [5, 1]. A cluster of small
number of our proposed servers and the modified MapReduce framework will be
able to provide better performance with lower energy consumption than existing
large commodity cluster systems.

Phoenix++ [18] is a highly optimized MapReduce framework for large-scale
shared memory CMP (Chip Multiprocessor)/SMP (Symmetric Multiprocessing)
systems. We find that single node performance of Phoenix++ is better than that
of Hadoop. This is also true for similar shared memory MapReduce library [11].
We propose a two level MapReduce framework: inter-node and intra-node level.
The inter-node level execution flow will be similar to a standard MapReduce
framework (e.g., Hadoop). In this paper we focus on intra-node level MapReduce
execution flow. We start with Phoenix++ and optimize it for our PIM architec-
ture. The intra-node level reduce phase performs local (node-level) optimization
before sending the results for inter-node level reduce phase i.e. global reduc-
tion. Our preliminary analyses show that a single node with proposed model can
obtain up to 23% energy savings on the processing units and 8.8% reduced exe-
cution time as compared to Phoenix++ running on an SMP system for several
Big Data workloads.

The rest of the paper is organized as follows. Section 2 includes the back-
ground and related work. Section 3 describes the new PIM architecture and
system organization. Section 4 describes MapReduce as a use case for the PIM
architecture and shows the modifications in the MapReduce workflow. In Sect. 5
we discuss experimental results. Section 6 concludes and discusses future steps.

2 Background and Related Work

3D-stacked DRAM is an emerging memory organization providing larger ca-
pacity with lower latency, higher bandwidth and lower energy than existing
2D-DRAM technologies [2, 23]. 3D-DRAM package is composed of several layers
of DRAM cells stacked on top of a logic layer containing the necessary periph-
eral circuitry for the DRAM. There are several prototypes, including the Hybrid
Memory Cube (HMC) [4] and the High Bandwidth Memory (HBM) DRAM [9].
The logic layer can accommodate additional processing capabilities [19, 20, 12,
15]. Processing-in-Memory is the concept of moving computation closer to mem-

MapReduce using Processing-in-Memory Technologies 3

ory that was investigated a decade ago [13, 19, 6, 10]. Researchers explored how
to integrate logic with memory for various applications.

MapReduce framework for large-scale data processing on clusters of commod-
ity machines was first developed by Google [5]. It involves three major phases:
map, reduce and merge. The user supplies the map() and reduce() functions
and the MapReduce runtime manages parallelization. Several different types
of frameworks are available for MapReduce, including Google MapReduce [5],
Apache Hadoop [1], MRMPI [14] for commodity clusters, Phoenix++ [18], Metis
[11], Ostrich [3] for shared memory systems, Mars [8], GPMR [17] for systems
using GPUs. We model our PIM architecture as a shared memory system, albeit
with Non-Uniform Memory Access (NUMA). Thus we rely on shared memory
MapReduce frameworks.

The Phoenix system [18, 16] and others [11, 3] provide MapReduce frame-
work for conventional large-scale shared memory CMP and SMP systems. We
use Phoenix++ [18], the most recent and highly optimized MapReduce frame-
work with NUMA-awareness for our study and propose changes to adapt it to
our PIM architecture. The architecture and MapReduce framework we propose
differ from the Phoenix++ system presented by Talbot et al. [18]. We also di-
verge from Google MapReduce [5] and Hadoop [1] in node-level task execution.

Recently proposed Near Data Computing (NDC) architecture [15] provides
a similar idea to our study and assumes 3D-DRAMs embedded with processing
cores. However the NDC study works with in-memory MapReduce workloads
where the entire input for computation is assumed to reside in the system mem-
ory. We do not make such assumptions but consider conventional storage systems
(e.g. Hard Disk Drive-HDD, Solid State Drive-SSD) as the source of input. This
difference significantly changes how we approach the Map and Reduce functions
using PIM cores.

3 Proposed PIM Architecture

PIM architectures could prove beneficial for data intensive and memory bounded
applications that may not necessarily benefit from a cache hierarchy [26]. PIM
cores can access memory using faster, high bandwidth, lower power TSVs [15,
20, 24]. Therefore moving the computation from the main processor closer to the
memory is a better choice for such applications. We base our server architec-
ture on the model proposed by Zhang et al. [20]. The server consists of a host
multi-core processor. The host is connected to four 3D-stacked DRAM Memory
Units (3DMUs). The host views the entire memory as a single physical memory
distributed among the 3DMUs. Figure 1 depicts the proposed PIM architecture.

Each 3DMU has several dedicated Processing-in-Memory cores (PIM cores)
embedded in its logic layer. Each PIM core is a simple in-order, single-issue,
energy efficient processing unit operating at a lower clock frequency than that
of the host cores. The system memory for the host and PIM cores is comprised
of the DRAM layers in the 3DMUs. We also assume that each PIM core has
its own small instruction and data caches. The execution of the threads running

4 MapReduce using Processing-in-Memory Technologies

Fig. 1: Proposed Hardware Architecture Fig. 2: Proposed Programming Model

on PIM cores is controlled by a manager process running on a host core. The
threads can access any physical address residing in any 3DMUs which are part
of its manager process address space. However, accesses to data in other 3DMUs
should be limited to avoid performance losses due to NUMA.

For our initial analyses we assume 8GB memory and 16 PIM cores in each
of the four 3DMUs. In section 5 we justify the number of PIM cores per 3DMU
and argue about a good number depending on the system usage. Note that the
number of PIM cores in the logic layer should be small enough not to exceed the
10W TDP of the logic layer [24]. Different architectural choices for the PIM cores
also play a big role, in terms of both performance and energy consumption. At
this time we assume ARM-like processing cores [21] as PIM cores. The proposed
server architecture can be used as a node in a cluster configuration for dealing
with very large amounts of data.

4 MapReduce using PIM

MapReduce workloads are memory intensive and do not benefit much from con-
ventional deep cache hierarchies [26]. Our goal is to optimize node level per-
formance of a MapReduce cluster by parallelizing the different phases with the
help of PIM cores. Our proposed MapReduce framework consists of two levels,
one is inter-node level (using processing nodes of a cluster) and the other is
intra-node level. The inter-node level execution flow can be similar to a stan-
dard MapReduce framework like Hadoop [1]. The intra-node level reduce phase
performs local (node-level) optimization before sending the results for inter-node
level reduce phase i.e. global reduction.

Since the server architecture proposed here is a special case of hierarchical
multi-core system with NUMA shared-memory (from the PIM cores point of
view), we have used Phoenix++ [18], a MapReduce framework designed for
large-scale SMP systems that exhibit NUMA behavior, as our base. We pay
particular interest to the structures for the intermediate <key, value> stores.
Because of these structures we can use PIM cores to efficiently parallelize map,
reduce as well as part of the merge phase. Additionally, we propose changes in the
actual Phoenix++ MapReduce flow, where we overlap the reading of the input
from storage with the actual map phase. The key issues related to MapReduce

MapReduce using Processing-in-Memory Technologies 5

applications, when executed on shared memory systems, are to ensure the locality
of map phase, selection of efficient intermediate data structures, decrease remote
memory access during the reduce phase and to use an efficient memory allocator
[18, 11].

4.1 Intra-Node MapReduce using PIM

Execution Flow of the Intra-Node MapReduce Framework. We assume
that any process running on a host core can request the runtime system to
allocate physical memory in any specific 3DMU, and thus aware of the location
of the data for the purpose of spawning PIM tasks on that memory unit. This is a
valid assumption because HSA (Heterogeneous System Architecture) Foundation
[7] is advocating such an organization. We next describe the MapReduce runtime
on a node level with respect to the architecture shown in Fig. 1. There is one
master process, which creates 4 manager processes (corresponding to 4 3DMUs)
and each manager process creates 16 worker threads on the 16 PIM cores of a
certain 3DMU. Inter-process communication is achieved through shared memory.
We label the 3DMUs and the manager processes from 0-3 so that each manager
corresponds to a 3DMU respectively. Figure 2 depicts the model.

Map and Combine Phase. In Phoenix++, the library reads the input data from
disk and keeps it in a single memory buffer prior to starting the map phase. How-
ever, in order to obtain maximum parallelism we will overlap these two phases.
We next describe the overlapping process using the aforementioned numbered la-
bels for better understanding. The master process reads 16 input splits at a time
from the disk and places them in a shared memory buffer residing in 3DMU-0.
The master process then starts reading the next 16 input splits into 3DMU-1.
In parallel, the manager process-0, which manages the 16 PIM core threads of
3DMU-0, allocates necessary memory in 3DMU-0 for the PIM threads to gen-
erate the intermediate output and then hands the execution over to them. Each
thread will start processing one input split with the provided map function. This
process is repeated until all of the input is processed.

Reduce and Merge Phase. The reduce phase across the 3DMUs is assumed to
be completed by the manger processes running on the host processor either
independently or with the help of PIM threads. The reduce phase can potentially
benefit from the parallel reduction on sets of unique keys. Initial stages of the
merge phase can be performed by the PIM cores in parallel as well.

5 Experiments and Results

5.1 Experiments

In order to evaluate the proposed architecture, we use a conventional server
as our baseline system. The configuration is provided in Table 1. This baseline

6 MapReduce using Processing-in-Memory Technologies

Table 1: Baseline and New System Configuration

Baseline System New System Configuration
Configuration Host Processor PIM Cores

Processing 2 × Xeon E5-2640 1 × Xeon E5-2640 64 (4 × 16)
Units 6 cores/processor, 2 HT/core 6 cores, 2 HT/core ARM Cortex-A5

Out-of-order Out-of-order In-order
4-wide issue 4-wide issue Single-issue

Clock Speed 2.5 GHz 2.5 GHz 1 GHz

LL Cache 15 MB/processor 15 MB 32 KB I, D/core

Memory BW 42.6 GB/s per processor 42.6 GB/s 1.33 GB/s per core

Power TDP = 95 W/processor TDP = 95 W 80 mW/core
Low-power = 15 W/processor (5.12 W for 64)

Memory 32 GB (8 × 4GB DIMM DDR3) 32 GB (4 × 8GB 3DMU)

Storage 1 TB HDD, SATA3, PERC H710 1 TB HDD, SATA3, PERC H710

MapReduce Phoenix++ Framework Proposed Framework (Sect. 4)

Table 2: MapReduce workload execution time (in seconds) for baseline system

Workload IP Size tbaseline (s) tread (s) tmap (s) treduce (s) tmerge (s)

word count 16 GB 176.67 162 14.6 0.05 0.02

histogram 1.3 GB 13.254 12.9 0.35 0.002 0.002

string match 16 GB 186.61 181 5.6 0.01 0.0

linear regression 16 GB 185.61 181 4.6 0.01 0.0

Table 3: ttransfer unit

Storage ttransfer unit

Technology

HDD 10.42 ms

SSD 2.17 ms

Table 4: tmap unit host

Workload tmap unit host

word count 25 ms

histogram 7 ms

string match 12 ms

linear regression 7 ms

system runs Phoenix++ library [16] with its standard setup. In Table 1, we
summarize the new system configuration we envision, which will be running the
modified MapReduce framework described here.

We use Phoenix++ to obtain the execution times for the baseline system and
to estimate the execution times for the proposed MapReduce framework running
on the PIM architecture. The total execution time of a MapReduce workload on
the baseline system can be expressed as:

tbaseline = tread + tmap + treduce + tmerge . (1)

In the baseline configuration there are 24 threads and 16 map tasks per
thread (total 384 map tasks). We ran different workloads on the baseline system
for different input sizes from 100MB up to 16GB and Table 2 shows execution
times for a specific input size. From the collected statistics we compute the
following two parameters: ttransfer unit, time to read one input split (1MB) from

MapReduce using Processing-in-Memory Technologies 7

storage into memory (Table 3) and tmap unit host, time to process an input split
(1MB) by one map task running on the host (Table 4). In the baseline system we
also have used Samsung PM830 SSD as storage and run the benchmarks. In this
case we observed around 4.8 times speedup in reading the input as compared
to HDD storage as implied by Table 3 data. We also run them with input sizes
larger than the physical memory (32GB), the results are discussed in Sect. 5.4.

5.2 Performance Analysis

The execution time benefit of the proposed MapReduce model lies in the over-
lapping of map tasks with the reading of input from storage to memory. As long
as the PIM cores do not sit idle waiting for input buffers to get filled, we believe
that this approach delivers performance improvements over a serialized process
where all of the input is first read before starting map tasks.

For the baseline system, from (1) the total execution time is tbaseline = tread+
tmap + treduce + tmerge. For different workloads we find that when the input size
is smaller than that of available physical memory then, tread > tmap + treduce +
tmerge. We discuss the case when the input is larger than available physical
memory in Sect 5.4. To reduce the total execution time we overlap the read and
map phases in our MapReduce framework. Hence the total execution time for
the proposed PIM based system is:

tnew = tread + treduce + tmerge . (2)

In order to achieve (2), we must ensure:

tmap ≤ tread . (3)

thereby tmap is completely overlapped with tread.
Another important fact is that the processing speed of PIM cores will be

slower than the host processor since PIM cores operate at lower clock rate and use
in-order single-issue execution. On the other hand, PIM cores are sitting closer
to memory so memory accesses are faster for them. We performed a simulation
using gem5 [25], and compared the execution time of a map function running on
an OoO X86 and an In-Order ARMv7 CPU model. The simulation parameters
were picked to mimic the actual CPU specifications in Table 1. We find that the
PIM cores would run approximately 4 times slower (i.e., slowdown factor, s =
4) than the host cores.

Initially we proposed a server with four 3DMUs each with 16 PIM cores.
The following analysis will explain why we choose 16 PIM cores per 3DMU.
We wanted to know the minimum number of PIM cores needed on each of the
3DMUs in order to satisfy (3). Each PIM core runs one thread and processes
one input split at a time. In our case, following must hold for (3) to be true,

s× tmap unit host ≤ 4 × n× ttransfer unit . (4)

In (4), s is the slowdown factor ≥ 1, tmap unit host is the time to process an
input split (1MB) by one map task running on the host core, 4 is the number

8 MapReduce using Processing-in-Memory Technologies

of 3DMUs in the server, n is the number of PIM cores in each 3DMU and
ttransfer unit is the time to read one input split (1 MB) from storage into memory.
Here we want the time taken by a group of PIM cores to process the input splits
to be smaller than, or equal, to the time taken by the host to fill in the buffers
in each of the 3DMUs.

We observe two cases, depending on how fast the PIM cores can process the
input in Fig. 3 (a) and (b). The host keeps reading input splits from storage as
long as there is more input. As soon as the input is available in a 3DMU, the
PIM cores in that 3DMU start the map tasks. In Fig. 3(a) the PIM cores are
processing the input at a much higher rate than the host can fill in the buffers.
In Fig. 3(b) the PIM cores in each 3DMU are busy processing the input almost
up to the point of time when the next set of input splits becomes available.

To achieve full utilization of the PIM cores following must hold,

s× tmap unit host = 4 × n× ttransfer unit . (5)

We solve (5) to find the minimum n (number of PIM cores per 3DMU)
for each of the workload independently. We use data from Table 3 and 4, and
compute n for a range of slowdown factors s. Figure 4 shows the required number
of PIM cores per 3DMU for different slowdown factors for different workloads.

Analyzing the graphs in Fig. 4 for two different storage technologies and four
different workloads one can conservatively estimate (choosing the closest greater
or equal integer which is a power of two) the number of PIM cores needed per
3DMU as 16 when estimated 4 times slower execution (s=4) of the map tasks
on a PIM core. Our study allows one to decide on the minimum number of PIM
cores per 3DMU needed so that tmap is completely overlapped with tread. One
can use more PIM cores than the minimum, but their utilization will drop.

Fig. 3: (a) PIM core utilization is low (b) PIM core utilization is high

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 2 4 6 8 10 12 14 16n
o
.
o
f
P

IM
 c

o
re

s
 p

e
r

3
D

M
U

,
n

slowdown factor, S

word_count

HDD

SSD

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 2 4 6 8 10 12 14 16

histogram

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

string_match

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 2 4 6 8 10 12 14 16

linear_regresion

Fig. 4: Each graph shows the number of PIM cores required per 3DMU (Y axis) for
different slowdown factors (X axis) for 2 different storage technologies, HDD and SSD.

MapReduce using Processing-in-Memory Technologies 9

We also analyze the area and power overhead of placing 16 PIM cores in the
logic layer of each 3DMU with ARM Cortex-A5 core as PIM core. Each such
core, with 32KB data and 32KB instruction cache, has an area of 0.80mm2 in
40nm technology [21]. So 16 PIM cores in the logic layer have an area overhead
of 11.9% [15] when HMC [4] is used as 3DMU. Furthermore, accumulated power
consumption of the 16 PIM cores will be 1.28W [21] which is only 12.8% of allow-
able 10W TDP of logic layer per stack [24]. Therefore we claim that integrating
16 PIM cores in the logic layer of each 3DMU is feasible.

We conclude that the total execution time in the proposed model, tnew is
faster than total execution time in the baseline system, tbaseline by tmap. Figure 5
shows tnew normalized to tbaseline for different workloads. We use data from Table
2 for tbaseline, for tnew we have used (2), and we take the estimated slowdown
factor of 4. We observe that the overall execution time for the proposed model is
reduced by 2.5% to 8.8% when compared to the baseline system for different Big
Data workloads. This evaluation includes only the performance gain for the map
phase; additional speedup may be achieved by parallelizing reduce and merge
(partially) phases on the PIM cores.

5.3 Energy Consumption

The total energy consumption of running a Big Data workload in the proposed
system is reduced by using lower power cores as well as decreasing the overall
execution time. We define Ebaseline and Enew as the total energy consumed by
the processing elements of the baseline and the new system respectively. The
baseline system consists of two Xeon processors (Table 1). To make our analyses
fair, and even favor the baseline, while computing Ebaseline, we assume that only
one of the processors in the baseline is active while reading the input i.e. during
the time tread the second processor will be placed in low power state consuming
15W. For the other phases both processors are fully active. While computing
Enew, we assume that the host processor and all the 64 PIM cores (Table 1) are
active during the entire processing. We calculate the energy consumption of the
processing units for the baseline and the new system as follows.

Ebaseline = [(TDP + Plow power state) × tread]

+[2 × TDP × (tmap + treduce + tmerge)] . (6)

Enew = [TDP + (64 × PPIM core)] × (tread + treduce + tmerge) . (7)

The power specifications for baseline and new system are listed in Table 1 and
the execution times of the different phases are given in Table 2. Figure 6 shows
that, for processing part, relative energy savings of one node range from 12%
to 23% as compared to the baseline system. The absolute energy savings range
from 80J to 2045J, depending on the workload.

5.4 Input Exceeding Physical Memory Capacity

If the input is larger than the available physical memory, we observe a non-
linear increase in map phase execution time (tmap) for our baseline. This happens

10 MapReduce using Processing-in-Memory Technologies

because by the time map phase starts, all the starting pages containing the input
are swapped out and there will be a large number of page faults. In some cases
we even have tmap > tread (e.g. word count in Table 5). This would not happen
if the input splits, on which the map tasks will work, were in the memory. In
our proposed model we handle such cases by bringing input splits into memory
and performing map tasks on them in an incremental fashion.

Table 5 shows the execution times for workloads in the baseline system (Ta-
ble 1) for input size larger than the physical memory. In such cases, with our
proposed model, one can achieve up to 56% reduction in execution time and up
to 71% energy savings on the processing units compared to the baseline system,
as calculated by (2) and (7) respectively. Note that here we get these numbers
for stand alone server performance. But in such cases, where the input is larger
than physical memory, one may choose to use a cluster of such nodes and for
each node we may get statistics as Table 2 and obtain gains as presented in
Sects. 5.2 and 5.3.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

wc histo strmatch linreg

T
o
ta

l e
xe

cu
tio

n
 t

im
e
 [

n
o

rm
a

liz
e
d

]

Normalized execution times

t_baseline t_new

Fig. 5: Normalized execution times for 16
PIM cores per 3DMU with slowdown factor
of 4, as compared to the baseline. The total
execution time is reduced by 2.5% to 8.8%.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

wc histo strmatchlinregT
o

ta
l e

n
e
rg

y
co

n
su

m
p

tio
n
 [

J]
Energy consumption

E_baseline E_new

Fig. 6: Energy consumption of process-
ing units of the PIM model compared
to the baseline. Energy savings range
from 80J to 2045J (12% to 23%).

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
an

dw
id

th
 [G

B
/s

]

Time [s]

Baseline system

read
map

reduce
merge

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 7 8 9 10

B
a

n
d

w
id

th
 [

G
B

/s
]

Time [s]

16 PIM cores (32KB L1 I/D)

map
reduce
merge

Fig. 7: Bandwidth consumption when running word count on two different systems.

Table 5: Execution time for baseline system when input is larger than physical memory

Workload IP Size tbaseline (s) tread (s) tmap (s) treduce (s) tmerge (s)

word count 32.5 GB 801.358 349.981 449.731 1.605 0.041

string match 32.4 GB 538.346 348.127 190.198 0.021 0.0

linear regression 32.5 GB 466.538 365.959 100.559 0.02 0.0

MapReduce using Processing-in-Memory Technologies 11

5.5 Bandwidth Utilization and Link Power

Figure 7 shows the actual bandwidth consumption of word count for different
MapReduce phases when running on different systems. Interestingly, the band-
width consumed by the baseline system does not exceed 15GB/s. PIM cores
show higher bandwidth utilization at lower power consumption. For our pro-
posed PIM server we can have low bandwidth links between the host processor
and the 3DMUs and thereby reduce power consumption. Note that during the
map phase the peak bandwidth required will depend on whether or not the in-
termediate data structures fit in the PIM core caches. 3DMUs provide memory
bandwidth of up to 320GB/s within the memory stack [4, 23]. The same band-
width is available to the host processor via 8 high speed SerDes links [4], each
of which provides bandwidth of 40GB/s with average power consumption of
5W [23]. We believe that PIM architectures are more energy efficient than tra-
ditional heterogeneous multi/many core architectures because they utilize the
bandwidth available within the memory stack and do not need the power hun-
gry SerDes links. The bandwidth consumed by the 16 PIM cores in one 3DMU
will not exceed 22GB/s [22] which is well below the 320GB/s available in the
unit. However, 64 PIM cores in four 3DMUs will have an effective peak band-
width consumption of 88GB/s. In order to support the same bandwidth for the
system with off the 3D-DRAM chip heterogeneous cores, we would need at least
3 SerDes links, consuming three times more energy on the links.

The bandwidth utilized within each 3DMU can be further increased by in-
creasing the number of PIM cores per 3DMU, however at the expense of higher
power consumption and possibly lower utilization. To fully utilize the 320GB/s
bandwidth, more than 200 PIM cores are needed, but then the power consump-
tion will exceed the constraint of 10W TDP for the logic layer of a 3DMU [24].

6 Conclusion and Future Work

In this paper we outlined our ideas about using simple cores embedded within
the logic layer of 3D-DRAMs for running MapReduce applications. We overlap
input reading and map phases. We also propose to utilize locality of data for
assigning tasks to PIM cores. Our preliminary results show gains in terms of
reduced execution time and energy savings for several MapReduce applications.

We intend to extend our preliminary work in several directions. First we
want to explore other possible architectures for PIM cores, including GPGPUs,
simple RISC cores, FPGA and Dataflow. Second, we want to characterize which
emerging workloads, and particularly which functionalities, benefit from a PIM
architecture and how to exploit the possible benefits. This includes extensive
simulation of memory intensive workloads in a PIM augmented system in order
to show the benefits in terms of energy savings as well as performance gains.

Acknowledgments. This work is conducted in part with support from the
NSF Net-centric IUCRC and AMD. We acknowledge David Struble’s help in
making this paper more readable.

12 MapReduce using Processing-in-Memory Technologies

References

1. Apache Hadoop, http://hadoop.apache.org/
2. Black, B., Annavaram, M., Brekelbaum, N., DeVale, et al.: Die stacking (3D) mi-

croarchitecture. In: Micro, pp. 469-479. IEEE, (2006)
3. Chen, R., Chen, H.: Tiled-MapReduce: Efficient and Flexible MapReduce Processing

on Multicore with Tiling. In: Transactions on Architecture and Code Optimization
10(1), 3. ACM, (2013)

4. Hybrid Memory Cube Consortium, http://hybridmemorycube.org/
5. J. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.

In: Proceedings of the conference on Symposium on OSDI, vol. 6. (2004)
6. Draper, J., Chame, J., Hall, M., et al.: The architecture of the DIVA processing-in-

memory chip. In: Proceedings of the Supercomputing, pp. 14-25. ACM, (2002)
7. HSA Foundation, http://www.hsafoundation.com/
8. He, B., Fang, W., Luo, Q., et al.: Mars: a MapReduce framework on graphics pro-

cessors. In: Proceedings of Parallel architectures and compilation techniques, pp.
260-269. ACM, (2008)

9. JEDEC, http://www.jedec.org/category/technology-focus-area/3d-ics-0
10. Rezaei, M., Kavi, K. M.: Intelligent memory manager: Reducing cache pollution

due to memory management functions. In: Journal of Systems Architecture, 52(1),
41-55. (2006)

11. Mao, Y., Morris, R., Kaashoek, M. F.: Optimizing MapReduce for multicore ar-
chitectures. In: CSAIL, Massachusetts Institute of Technology, Tech. Rep. (2010)

12. Loh, G., Jayasena, N., Oskin, M., et al.: A Processing in Memory Taxonomy and a
Case for Studying Fixed-function PIM. In: Near-Data Processing workshop. (2013)

13. Patterson, D., Anderson, T., Cardwell, N., et al.: A case for intelligent RAM. In:
Micro, 17(2), 34-44. IEEE, (1997)

14. Plimpton, S. J., Devine, K. D.: MapReduce in MPI for large-scale graph algorithms.
In: Parallel Computing, 37(9), 610-632. (2011)

15. Pugsley, S. H., Jestes, J., Zhang, H.: NDC: Analyzing the Impact of 3D-Stacked
Memory+Logic Devices on MapReduce Workloads. In: International Symposium on
Performance Analysis of Systems and Software. (2014)

16. Phoenix System for MapReduce Program, http://mapreduce.stanford.edu/
17. Stuart, J. A., Owens, J. D.: Multi-GPU MapReduce on GPU clusters. In: Parallel

and Distributed Processing Symposium, pp. 1068-1079. IEEE (2011)
18. Talbot, J., Yoo, R. M., Kozyrakis, C.: Phoenix++: modular MapReduce for shared-

memory systems. In: Proceedings of the international workshop on MapReduce and
its applications, pp. 9-16. ACM, (2011)

19. Torrellas, J.: FlexRAM: Toward an advanced Intelligent Memory system: A retro-
spective paper. In: Intl. Conference on Computer Design, pp. 3-4. IEEE, (2012)

20. Zhang, D. P., Jayasena, N., Lyashevsky, A., et al.: A new perspective on processing-
in-memory architecture design. In: Proceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness, p. 7. ACM, (2013)

21. ARM, http://www.arm.com/products/processors/cortex-a/cortex-a5.php
22. Atmel SAMA5D3, http://www.atmel.com/microsite/sama5d3/highlights.aspx
23. Graham, S.: HMC Overview. In: memcon Proceedings. (2012)
24. Zhang, D., Jayasena, N., Lyashevsky, A., et al.: TOP-PIM: throughput-oriented

programmable processing in memory. In: Proceedings of international symposium
on High-performance parallel and distributed computing, pp. 85-98. ACM, (2014)

25. gem5 Simulator System, http://www.m5sim.org
26. Ferdman, M., Adileh, A., Kocberber, O., et al.: A Case for Specialized Processors

for Scale-Out Workloads. In: Micro, pp. 31-42. IEEE, (2014)

