
Speculative Thread Execution in a Multithreaded Dataflow Architecture

Wentong Li, Krishna Kavi, Afrin Naz and Phil Sweany
Department of Computer Science and Engineering

P. O. Box 311366, University of North Texas, Denton, TX 76203.
email:{wl, kavi, an0042, sweany}@cse.unt.edu

Abstract

Instruction Level Parallelism (ILP) in modern Super-
scalar and VLIW processors is achieved using out-of-order
execution, branch predictions, value predictions, and spec-
ulative executions of instructions. These techniques are not
scalable. This has led to multithreading and multi-core
systems. However, such processors require compilers to
automatically extract thread level or task level parallelism.
Loop carried dependencies and aliases caused by complex
array subscripts and pointer data types limit compilers’
ability to parallelize code. Hardware support for thread-
level speculation (TLS) allows compilers to more aggres-
sively parallelize programs using speculative thread execu-
tion, since hardware will enforce correct order of execution.
In this paper, we show how thread-level speculation can be
implemented within the context of our Scheduled Dataflow
architecture and provide preliminary performance analysis.

1 Introduction

Superscalar and VLIW architectures are the main ar-
chitectural models used in commercial processors. These
models rely on out-of-order execution, branch prediction,
speculative execution of instructions, value prediction,and
trace caches to achieve high degrees of instruction level
parallelism (ILP). But researchers have shown that simply
adding more functional units, or dynamic scheduling of in-
struction are approaching diminishing returns in terms of
further improving single processor performance [1]. This
has led to an increased interest in architectures that sup-
port concurrent execution of multiple threads. There are
now commercially available products like the Intel hyper-
threading architecture that implements the SMT (simul-
taneous multithreading) [6], and Intel DUO architecture
which implements a dual core CMP (chip multiprocessor)
on a single chip. These architectures are derived from the
superscalar model. The complexity of the underlying su-
perscalar architecture makes it harder to scale the clock fre-
quency to improve performance for these designs.

We have been exploring hybrid von Neumann –
dataflow models of execution for the past decade. Our SDF
(scheduled dataflow) architecture uses dataflow-like non-

blocking threads, but uses the conventional von Neumann
execution model for instructions within a thread [4]. We
have shown that SDF outperforms superscalar and VLIW
based models [5]. We have also shown that SDF compares
favorably with SMT-like architectures. We believe that
higher Instructions Per Cycle (IPC) can only be achieved
when multiple threads, either from a single program, or
from a workload are executed on multi-core processors
with large numbers of functional units. Compiler tech-
nology is improving in automatic extraction of thread-level
parallelism from programs written in imperative languages
like C. However, compile time analyses are conservative
in order to guarantee program correctness. Compilers can
more aggressively extract parallelism if hardware checks
are in place to guarantee program correctness. Architecture
researchers are exploring one such hardware mechanism:
support for speculative thread execution [7, 8, 9, 10]. In
this paper, we propose speculative thread execution within
the context of our SDF. We provide preliminary data on the
performance gains resulting from our thread-level specula-
tion.

2 Related Research

Thread-level speculation is a technique that enables
compilers to optimistically parallelize applications despite
ambiguous data or control dependencies. Most parallel
compilers extract parallelism by spawning multiple loop
iterations if the compiler can clearly identify loop-carried
dependencies and resolve aliases due to array subscripts or
pointers. Thread-level speculation (TLS) hardware will en-
force dynamic data and control dependency checks. Once
a violation is detected, the system will squash the results of
speculative threads and restart the computation. Marcuello
et al. [8] proposed a multithreaded micro-architecture that
supports speculative thread execution within a single pro-
cessor. This architecture dynamically spawns speculative
threads. It contains multiple instruction queues, register
sets, and a very complicated multi-value cache to support
speculative execution of threads. Zhang et al. [9] proposed
a scheme that supports speculative thread execution in large
scale distributed shared memory (DSM) systems relying

102

on cache coherence protocols. Steffan et al. [10] proposed
an architecture that supports TLS execution both within a
CMP core and across distributed nodes in DSMs. This de-
sign is based on conventional architecture, but needs very
extensive support from the operating system. The design
is based on cache coherence protocols. However, the pub-
lished literature does not provide details on the implemen-
tation. Our design needs a small amount of extra hardware
to implement speculation in the context of SDF architec-
ture. It can be fully integrated with the data cache co-
herence controller to ensure the correctness of execution
across multiple clusters of SDF cores.

3 SDF Architecture Review

SDF architecture differs from other multithreaded ar-
chitectures in two ways: i) our programming paradigm
is based on non-blocking threads, and ii) we decouple
all memory accesses from execution pipeline. Data is
preloaded into an enabled thread’s register context prior to
its scheduling on the execution pipeline. After a thread
completes execution, the results are post-stored from its
registers into memory (or frames of awaiting threads). We
use two separate processing elements: SP performs pre-
load and post-store while the Execution Processor (EP) per-
forms actual computations of a thread. A third processing
element is responsible for scheduling threads and moving
them between EPs and SPs. The continuation of a thread is
represented by a four-tuple –<FP, IP, RS, SC>; FP is the
Frame Pointer (where thread input values are stored), IP is
the Instruction Pointer (which points to the thread code),
RS is a Register Set (a dynamically allocated register set),
and SC is a Synchronization Count (the number of values
needed to enable that thread). The continuation fully and
uniquely identifies a thread.

Unlike Superscalar, our architecture performs no (dy-
namic) out-of-order execution of instructions of a thread
and thus eliminates the need for complex instruction issue
and retiring hardware.

4 Thread-Level Speculation Schema for the
SDF Architecture

For the original SDF architecture, our compiler gener-
ated sequential threads when ambiguous dependencies ex-
isted among threads, to guarantee correct execution. With
some hardware to support speculative execution of threads
and committing results only when the speculation is ver-
ified, a complier can more aggressively create threads to
execute concurrently.

4.1 The SDF Architecture Supported by the
Schema

Our TLS schema not only supports speculative exe-
cution within a single node of SDF cluster consisting of
multiple EPs and SPs, but also supports speculation in SDF
clusters using distributed shared memory (DSM) protocols.
Our design is derived from a variation of the invalidation
based MESI protocol [11]. We add extra hardware in each
node to maintain intra-node coherence.

4.2 States in Our Design

In our schema, an invalidate message will be gener-
ated by a node to acquire exclusive ownership of data stored
in a cache line before updating the cache. Three states, Ex-
cusive (E), Shared (S), and Invalid (I), are needed to main-
tain the inter-node coherence. We add two more states:
speculative read of an exclusive data (SpR.Ex) and spec-
ulative read of a shared data (SpR.Sh). We can distinguish
the states easily by adding an extra S (Speculative read) bit
to each cache line. Table 1 shows the encoding of the cache
line states.

Table 1: Encoding of Cache Line States

State SpRead Valid Dirty(Exclusive)

I X 0 X

E/M 0 1 1

S 0 1 0

SpR.Ex 1 1 1

SpR.Sh 1 1 0

4.3 Hardware Design for Our Schema

In the new architecture, a (speculative) thread is
defined by a new continuation consisting of a 7-tuple –
<FP, IP, RS, SC, EPN, RIP, ABI>. The first four elements
are the same as the original continuations in SDF (see
Section 3). The added elements are: epoch number (EPN),
re-try instruction pointer (RIP) and address-buffer ID
(ABI). For any TLS schema, an execution order of threads
must be defined based on the program order. We use epoch
numbers (EPN) for this purpose. Speculative threads must
commit in the order of their epoch numbers. RIP defines
the instruction at which a failed speculative thread must
start its retry. ABI defines the buffer ID that is used to
store the addresses of speculatively-read data. For the
non-speculative thread, the three new fields will all be set
to zero. We use a separate queue for speculative threads
to control the order of their commits. Figure 1 shows the

103

overall design of our new architecture.
For the controller (Thread Schedule Unit) to dis-

execution queue

speculative
commit queue

Control
Commit

preload queue

poststore queue

Schedule Unit

SPs EPs

Thread

Figure 1: Overall Design

tinguish between speculative and non-speculative threads,
it only needs to test the epoch field of the continuation -
any continuation that has a non-zero epoch number is a
speculative thread. Speculative threads commit strictly
in the order of the epoch numbers. The commit control
maintains the epoch number of the next thread that can
commit based on the program order and will test the epoch
number of a continuation that is ready for commit. If these
numbers are the same and no data access violations are
found in the reorder buffer associated with the thread, the
commit controller will schedule the thread for commit. If
there is a violation, the commit controller sets the IP of
that continuation to RIP and places the thread back in the
preload queue for re-execution. At this time, the thread
becomes non-speculative.

In order to achieve address matches in parallel for the

Invalid Address from External

...
entry 1

entry n

...
entry 1

entry n

...
entry 1

entry n

...
entry 1

entry n

. . .

Invalid Address from SP0

Invalid Address from SP1

Invalid Address from SP2

Invalid Address from SP3

Speculative
Read Address

Speculative
Read Address

Speculative
Read Address

Read Address
from SP0

from SP1

from SP2

from SP3

Speculative

address buffer id

address buffer id

address buffer id

address buffer id

Figure 2: Address Buffer Block Diagram

speculative threads, we add a few small fully-associative
buffers to record the addresses of data that is speculatively
accessed by a thread. Data addresses are used as indices
into these buffers. The address buffer ID (ABI) is assigned
when a new continuation for a speculative thread is created.
When a speculative read request is issued by a thread, the

address of the data being read is stored in the associated
address buffer assigned to the thread and the entry is set
to valid. When a speculatively read data is subsequently
written by a non-speculative thread, the corresponding
entries in the address buffers are invalidated, and this
will prevent a speculative thread from committing. To
determine whether a continuation is valid or not, we only
need a simple OR- tree, to logically-or all entries of the
buffer assigned to that thread. The block diagram of
address buffer for a 4-SP node is shown in Figure 2. This
design allows invaliding a speculatively-read data in all
threads simultaneously. It also allows different threads
to add different addresses into their buffers. When an
invalidate request comes from the bus or a write request
comes from inside the node, the data cache controller will
change the cache line states, and the speculative controller
will search the address buffer to invalidate appropriate
entries.

Threads in SDF architecture are fine-grained and thus
the number of data items read speculatively will be small.
We believe that by limiting the number of speculative
reads by a thread, we can improve the probability that a
speculative thread does not fail. Unlike other TLS models,
since our threads are non-blocking, we allow threads to
complete execution even if some of their speculatively read
data is invalidated. The results of a thread (in post-store)
are not committed unless all speculative reads remain valid
at the time the thread is ready for commit. An invalid
speculation will force the thread to retry using RIP pointer.

4.4 States Transition Diagram

In our design, a speculative thread cannot write any
results to data cache. Once a speculative thread is allowed
to commit, it starts to write its result into cache (performed
by SP in post-store phase).

Figure 3 shows the state transition diagrams for
tracking data reads and writes by speculative and non-
speculative threads. Figure 3(a) shows the cache line state
transitions due to requests from a node within a cluster (i.e.,
intra-node). The key idea is that every speculative read
will change the cache line states to speculative and also
allocates an entry in the corresponding ABI buffer and ev-
ery (non-speculative) write will invalidate the entries inthe
ABI buffer. Figure 3(b) shows the cache line state tran-
sitions due to the memory bus activities (i.e., inter-node
transactions). The write miss message from the bus will
invalidate cache line and corresponding ABI entries. Due
to the page limits, we will not be able explain each of the
state transitions in detail. Most transactions are similarto
MESI type cache coherency protocols.

104

 R

ea
d

M
iss

 &
 n

ot
 in

 A
BI

S

Read Hit

R
ea

d
H

it R
ead H

it

SpR.Ex SpR.Sh

E

Read Hit

I

SpR
ea

d
M

is
s

(R
ea

d
M

is
s

O
n

Bus
)

(W
rite

−back
,Place

 re
ad m

iss
 on bus)

Read M
iss

R
ead M

iss(P
ut read m

iss on bus)

Write Miss

Write Hit

Read Miss(Write−back,Place read miss on bus)

Write Hit

SpRead Miss

Write Hit

Write Miss

W
rite M

iss

Write Miss

Write Hit

(R
ea

d
M

iss
 o

n
bu

s)

S
pR

ea
d

H
it

SpRead Hit

(Write−back,Place read miss on bus)

SpRead Hit

SpRead Miss(W
rite−back,Place read miss on bus)

S
pR

ea
d

H
it

S
pR

ead M
iss

Read Miss
(Put read miss on bus)

(Put read miss on bus)
SpRead Miss

(a) Request from Internal

(write−back)

S

SpR.Ex

E

Read Miss(NA)

Read Miss(Sahare Data, Place Block on Bus)

Read Miss(Sahare Data, Place Block on Bus)
SpR.Sh

I

Read Miss(NA)

Write Miss

(write−back)

Write Miss Write Miss

(Invalidate EA entry)Write Miss

(Invalidate EA entry)

(b) Request from Bus

Figure 3: State Transition Diagrams

4.5 Instruction Set Architecture Extension

We added 3 new instructions to the SDF for thread-
level speculation. The first instruction is for speculatively
spawning a thread. This instruction will request the system
to assign an epoch number and an ABI for the new contin-
uation. The second instruction is for speculatively reading
data, which will cause the addition of an entry into the ad-
dress buffer associated with that continuation. It should be
noted that not all reads of a speculative thread are specula-
tive reads. A compiler can resolve most data dependencies
and use speculative reads only when static analyses cannot
determine memory ordering. It should also be noted that
when a speculative thread is invalidated, the retry needs
only to re-read speculatively-read data. The third instruc-
tion is for committing a speculative thread. This instruction
places the speculative thread continuation into the specula-
tive thread commit queue.

5 Experiments and Results

We extended our SDF simulator with this speculative
thread execution schema. This simulator performs cycle-
by-cycle functional simulation of SDF instructions. We

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(a) SP:EP 33%:66%

 0

 2

 4

 6

 8

 10

 12

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(b) SP:EP 66%:33%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 90 80 70 60 50 40 30 20 10 0

S
pe

ed
up

Success Rate (%)

8SP8EP
6SP6EP
4SP4EP
2SP2EP

(c) SP:EP 50%:50%

Figure 4: Performance Model of TLS Schema

used synthetic benchmarks to evaluate the performance of
our design.

5.1 Synthetic Benchmark Results

We created benchmarks that execute a loop containing
variable number of instructions. We controlled the amount
time a thread spends at SPs and EPs by controlling the
number of LOADs and STOREs (for SP load) and com-
putational instructions (for EP load). We parallelized these
benchmarks with speculation. We now show the results of
our evaluation.

Figure 4(a) shows the performance of a program that
will spend 33% of the time in SPs and 67% of time in EPs.

105

Figure 4(b) shows the performance for threads with 67% of
SP time, 33% of EP time, and Figure 4(c) shows the per-
formance for a 50%-50% EP-SP loads. All benchmarks are
tested using different success rates of speculation. We con-
figured our simulator with different number of functional
units: 8SPs-8EPs, 6SPs-6EPs, 4SPs-4EPs, and 2SPs-2EPs
to evaluate the scalability of our thread-level speculation.

Since our SDF performs well when the SPs and EPs
have balanced load, we would expect best performance for
the case when we started with a balanced load (Figure 4(c)),
and when the success of speculation is very high (closer
to 100%). However, even in this case, as the speculation
success drops (and is closer to zero), the load on EPs in-
crease because failed threads will have to re-execute their
computations. As stated previously, a failed thread only
needs to re-read (or pre-load) the data items that were read
speculatively and data from a thread are post-stored only
once when the thread speculation is validated. Thus a failed
speculation will disproportionately add to EP load. For the
case shown in Figure 4(b), with a smaller EP loads, we ob-
tain higher speed-ups (compared Figures 4(a) or 4(c)) at
lower success rates of speculation, since EPs are not heav-
ily utilized in this workload. For the 33%-66% work load in
Figure 4a, even a close to100% success rate will not lead to
good performance gains on SDF, because EP is overloaded
to start with, and the speculative execution adds to the load
of EPs.

Figure 5 below shows the ratio of instructions exe-
cuted by EPs and SPs as the fail rate increases. With the
increase of the fail rate, EPs will be more heavily loaded.
Since more instructions must be executed per thread (on
retry on a mis-speculation), the performance drops as the
success rate drops. The balance of the workload between
EP and SP will affect the scalability of Of speculation.
With SP33:EP66 load, the EP is heavily loaded and it
shows the worst performance with speculation, compared
to the other two workloads. Figure 6 shows the increase
in the workload, normalized to the case when the specu-
lation success is 100%. Since most of the re-try work is
done by the EP, when EP is less heavily loaded than SP
(EP/SP work ratio is small) we see smaller increases in the
overall work, as the fail rate increases. When the specula-
tion success approaches zero, (indicating strict sequential
ordering of threads) the overhead due to retries can actu-
ally cause a performance drop in a multithreaded system.
The SP66:EP33 workload which has the smallest increases
in the overall workload has the best performance when the
fail rate above 50%.

We can also see that when the success rate of spec-
ulation is below 50%, there are insignificant differences
among the performance gains resulting from different num-
ber of functional units (number of EPs and SPs). This is be-
cause of sequential execution resulting from dependencies
(leading to lower speculation successes) and cannot utilize
available functional units.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 90 80 70 60 50 40 30 20 10 0

In
st

ru
ct

io
n

R
at

io
 E

P
/S

P

Fail Rate (%)

SP 50: EP 50
SP 33: EP 66
SP 66: EP 33

Figure 5: Ratio of Instruction Executed EP/SP

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 90 80 70 60 50 40 30 20 10 0
N

or
m

al
iz

ed
 In

st
ru

ct
io

n
(w

ith
 0

%
 F

ai
l)

Fail Rate (%)

SP 50:EP 50
SP 33:EP 66
SP 66:EP 33

Figure 6: Normalized Instruction Ratio to 0% Fail Rate

From this group of experiments, we can draw the fol-
lowing conclusions. Speculative thread execution can lead
to performance gains over a wide range of speculation suc-
cess probabilities. In all workloads with different load on
SPs and EPs, we can obtain at least 2 fold performance gain
when the success of speculation is greater than 50%. If the
success rate drops below 50%, one should turn off spec-
ulative execution to avoid excessive retries that can over-
load EPs. When the EP load is less than the SP load, we
can tolerate higher rates of mis-speculation. When the suc-
cess rates are below 50%, the performance does not scale
well with added SPs and EPs (8SPs-8EPs, 6SPs-6EPs, and
4SPs-4EsP all show similar performance). This suggests
that the success of speculation can be used to decide on the
number of SPs and EPs needed to achieve optimal perfor-
mance.

6 Conclusion and Future Work

In this paper, we described hardware support for
thread-level speculation (TLS) in the context of our SDF
architecture and evaluated the performance of such TLS
support by varying workloads, number of functional units
and success rates of speculations. With hardware TLS sup-
port, compilers can aggressively generate parallel threads

106

even with unresolved loop-carried dependencies. The TLS
support works well with a wide range of speculative thread
success rates(0% ∼ 100%). Our architecture achieves
scalable performance with added functional units when the
success of speculation is high (greater than 50%). Our
hardware TLS support is much simpler than TLS support
in traditional architectures that are based on superscalar
paradigm. We are currently working to extend the exper-
iments with real benchmarks. We are also planning to ex-
plore silent writes [13] for buffering writes from specu-
lative threads to further improve performance by retiring
speculative threads early.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.
Burger. “Clock Rate Versus IPC: The End of the Road
for Conventional Microarchitectures”,27th Interna-
tional Symposium on Computer Architecture (ISCA),
pp.248-259, June 2000.

[2] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C.K.
Kim, D. Burger, S.W. Keckler, and C.R Moore. “Ex-
ploiting ILP, TLP, and DLP Using Polymorphism in
the TRIPS Architecture”,30th International Sympo-
sium on Computer Architecture (ISCA), pp. 422-433,
June 2003.

[3] S. Swanson, K. Michelson, A. Schwerin, and M. Os-
kin. “WaveScalar”,In Proceedings of the 36th Inter-
national Symposium on Microarchitecture(MICRO),
pp291-302, December 2003.

[4] K.M. Kavi. H.S. Kim and A.R. Hurson. “Sched-
uled dataflow architecture: A synchronous execution
paradigm for dataflow”,IASTED Journal of Comput-
ers and Applications, pp114-124, Vol. 21, No. 3 (Oct.
1999).

[5] K.M. Kavi, R. Giorgi and J. Arul. “Scheduled
Dataflow: Execution paradigm, architecture and per-
formance evolution”,IEEE Transactions on Comput-
ers, pp 834-846, Vol. 50, No. 8, August 2001.

[6] D.M. Tullsen, S.J. Eggers, H.M. Levy, and J.L. Lo,
“Simultaneous multithreading: Maximizing on-chip
parallelism”, In International. Symposium on Com-
puter Architecture (ISCA), pp. 392-403, June 1995.

[7] M. Franklin and G.S. Sohi. “ABR: A Hardware Mech-
anism for Dynamic Reordering of Memory Refer-
ences”,IEEE Transactions on Computers, Vol. 50,
No. 5, May 1996.

[8] P. Marcuello, A. Gonzalez and J.Tubella. “Specula-
tive Multithreaded Processors”,In proceeding of the

International Conference on Supercomputing, pages
77-84, July 1998.

[9] Y. Zhang, L. Rauchwerger, and J. Torrelas. “Hard-
ware for Speculative Parallelization of Partially-
Parallel Loops in DSM Multiprocessors”,In 5th In-
ternational Symposium on High-Performance Com-
puter Architecture (HPCA), pp.135-141, January
1999.

[10] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry,
”A Scalable Approach to Thread-Level Speculation”,
27th International Symposium on Computer Architec-
ture (ISCA), pp.1-12, June 2000.

[11] J.L. Hennessy and D.A. Patterson,Computer Ar-
chitecture: A Quantitative Approach (3rd edition),
,2003.

[12] A.R. Hurson, J.T. Lim, K.M. Kavi, and B. Lee, “Par-
allelization of DOALL and DOACROSS Loops – A
Survey”,Advances in Computers, pp.53-103, Vol. 45,
1997

[13] K.M. Lepak and M.H. Lipasi, “On the Value Locality
of Store Instructions”,27th International Symposium
on Computer Architecture (ISCA), pp.182-191, June
2000.

107

