
 IJCA, Vol. 21, No. 3, Sept. 2014

ISCA Copyright© 2014

178

Potential Energy Savings Through Eliminating Unnecessary
Writes in the Cache-Memory Hierarchy

Charles Shelor*, Jim Buchanan*, and Krishna Kavi*
University of North Texas, Denton, TX USA

Ron Cytron†

Washington University, St. Louis, MO USA

Abstract

Many different areas of research are addressing reduction of
energy in computing systems. These include new
semiconductor technologies, low-power design rules, clock
gating, and voltage/frequency scaling, just to name a few. This
paper presents a new energy reduction approach involving the
compiler and computer system architecture. Eliminating
unnecessary writes in the system has the potential to reduce
energy by 15 percent in the cache-memory hierarchy.
Unnecessary writes occur when modified cache lines are
evicted and written back to the next cache level or to main
memory even though the modified data contained in those
lines is no longer needed by the program or does not change
the existing memory contents. Unnecessary writes include
values in retreating stacks and values in heap objects that have
been deallocated. Unnecessary writes also occur as a result of
unmodified data values being written back as part of a
modified cache line. Unnecessary writes affect a computer
system’s performance in several ways. The energy used by
these writes is wasted energy. The unnecessary writes require
execution time as memory bandwidth and they reduce the
component lifetime of limited write-cycle technologies such as
flash memory or phase-change memory (PCM). This paper
characterizes the number and type of unnecessary writes
through the memory hierarchy and quantifies the amount of
potential energy savings that can be obtained from eliminating
unnecessary writes.

Key Words: Computer architecture, energy reduction,
compiler optimizations, memory systems, phase change
memory.

1 Introduction

One of the major focuses in current research of computing

systems is minimizing the power consumption of
computations. This is a broad-based research theme as mobile
computing devices strive for longer battery life while cloud-
computing data centers and supercomputers are concerned
with the massive power needs and cooling requirements for
their systems. This is being addressed by the computing

* Department of Computer Science and Engineering.
† Department of Computer Science.

industry in many ways: continuing improvements in
semiconductor technology, low-power circuit-design rules,
clock gating, optimizing cache configurations, and voltage-
frequency scaling are just a few examples. This paper
proposes the reduction of unnecessary writes throughout the
memory hierarchy as another method to reduce energy use
within a computer system. The paper documents the type and
quantity of unnecessary writes at each level of the memory
hierarchy for various benchmarks. This information is then
used to propose methods to reduce or eliminate the
unnecessary writes at each of the levels.

The results from this research for a typical cache
configuration show 59 percent of the bytes written to the L1
cache, 69 percent of the bytes written to the L2 cache, 66
percent of the bytes written to the L3 cache, and 44 percent of
the bytes written to main memory fall into the unnecessary-
writes categories. This research also shows that cache size
does have a moderate effect on the unnecessary write
percentages, while other cache configuration aspects have
negligible effects. Eliminating all of these unnecessary writes
would save 15.5 percent of the energy used by the cache-
memory subsystem. Even if only 1/2 of the unnecessary writes
were removed, nearly 8 percent of the cache-memory power
use would be saved. This paper shows that unnecessary writes
come from a variety of sources, and reducing these
unnecessary writes requires coordinated compiler and
architectural enhancements for maximum benefits.

The rest of the paper is organized as follows. Section 2
classifies writes (or data modifications) for the purpose of
identifying unnecessary writes. Section 3 describes the tools
used and modifications to those tools required to perform the
write classification and to collect the data for determining the
unnecessary writes. Section 4 describes the experimental setup
of benchmarks and the cache configurations used in the data-
collection process. Section 5 discusses the results and analysis
of the experiment. Section 6 proposes some implementations
for reducing the unnecessary writes. Section 7 describes the
research to be performed to test and evaluate the proposed
unnecessary-write reductions. Section 8 contrasts the work of
this paper with other research projects with similar goals.
Section 9 provides the conclusions derived from this research.

2 Write Classification

The basic premise of an unnecessary write is that the

IJCA, Vol. 21, No. 3, Sept. 2014

179

elimination of that write-operation would not cause incorrect
program behavior. Thus, the functional behavior of a program
with the unnecessary writes eliminated would be
indistinguishable from the functional behavior of the program
with the unnecessary writes left intact. Write operations
within the memory hierarchy were analyzed to determine a
classification system. A total of six classes of write operations
were established based on the characteristics of the write with
respect to the active software program and the computer
system. The first three classes apply to both processor writes
and to cache-line write-back writes. The last three classes
apply only to cache-line write-backs.

2.1 Live Write

A live write is when data is written to an address, changes

the current value at that address, and that address is later read
by the application program to retrieve the changed value. A
live write is the common conception of all write accesses. A
live write should never be eliminated, as it would result in
incorrect program execution as the subsequent read would
retrieve the old, incorrect data. A live write is the only write
class that is not an unnecessary write.

2.2 Useless Write

A useless write is a write transaction that modifies the data

at an address, but the application program never reads the
changed data. This may be the result of a subsequent write
changing the data before it is read or by the application
program terminating without reading the new data. As the
information from a useless write is never used, the write can be
eliminated without affecting correct program execution making
a useless write an unnecessary write.

2.3 Dusty Write

A dusty write is a write operation where the current data at

the write address already matches the data being written. One
example of this is a linked-list being followed back to its
starting point. When this cache line is written back to
memory, the write data matches the original data. Another
example occurs in sorting routines where some items are
already partially sorted and get written back to their original
locations. Another source of dusty write bytes are pointers and
counters where the upper data bytes change infrequently
relative to the lower data bytes. Dusty writes are easy to detect
during the write cycle by comparing the data being written to
the existing data at that address. Since a dusty write does not
change data at the written address it is an unnecessary write.

2.4 Dead Write

A dead write is a cache-line write operation where the

address of the cache line is no longer active within the
application program. One source of dead writes is when the
program has freed a heap block of memory and there are dirty
cache lines for that freed block. Those cache lines eventually

get evicted from the cache and written back to the next cache
level or memory. Another source of dead writes is a retreating
stack. Modified data that is left on the stack when a function
returns will not be accessed again by the program. As the data
written during a dead write is no longer valid for the
application program, the write is unnecessary.

2.5 Untouched Write

An untouched write occurs when only a part of a cache line

is accessed and modified. This happens because cache lines are
larger than data objects. However, the cache keeps dirty bits
on a cache line basis and cannot distinguish untouched
portions of the line from modified portions. Thus when the
cache line is written back, both touched and untouched
portions will be written back. The untouched bytes are
unnecessary writes as they are the same value that was
originally read from memory.

2.6 Mixed Write

A mixed write occurs when a cache line or cache sub-block

contains more than one write type. A mixed write that contains
at least one live write byte cannot be considered an
unnecessary write at cache-line granularity as the write must
be performed for program correctness. However, cache lines
that are a mixture of only dead, dusty, useless and untouched
writes are categorized as unnecessary writes for the cache line.

3 Tools Used

The project chose to use Valgrind, Gleipnir, DineroIV and

Cacti as the tools for this research. These tools are all public
domain tools and Valgrind, DineroIV, and Cacti are widely
used in computer architecture research.

Valgrind. Valgrind [10] was used to perform instrumented

simulation of the applications. Valgrind is a simulation
framework allowing a variety of tools to monitor and interact
with the program being simulated. There were no changes
made to the core Valgrind operation for our research.

Gleipnir. Gleipnir [7] is a data-structure analysis tool
integrated into the Valgrind framework. Gleipnir was used to
determine global, heap, or stack scope of the memory accesses
and to generate the trace file of the memory accesses. For the
purpose of this research, the Gleipnir trace-output functions
were modified to include the data values at each of the
addresses in the trace as that information is required to detect
dusty writes. Gleipnir was also modified to output a trace
record for each change to the application stack pointer as that
information is required to detect dead writes from a retreating
stack. A final modification to Gleipnir added address and size
information for all forms of malloc() and added address
information for all free() function calls to the output trace file.
This information was needed to detect dead writes to
deallocated heap objects. An example of Gleipnir output is
shown in Figure 1. Each line begins with a “type code” letter
indicating the type of memory transaction or system operation.

 IJCA, Vol. 21, No. 3, Sept. 2014

180

Type Pid Address Size Data Scope
A 8407 054f87b0 242
F 8407 054f87e0
I 8407 004c2b4a9 4 4883c440
L 8407 0007143c0 4 000001c3 G
M 8407 7ff000158 8 0049ae7a00000000 S
P 8407 7ff000110
S 8407 0054ea24c 4 000002bd H
This entire line is a comment

Figure 1: Example of Gleipnir trace output

The type codes are defined as:

• A Memory allocation operation
• F Memory free operation
• I Instruction fetch
• L Load data from memory
• M Modify memory location
• P Stack pointer change
• S Store data to memory
• # Comment line

The next field is the decimal process identification number for
multiple core trace files and is required for all transaction types
except comments. The next field is the hexadecimal address of
the memory transaction or operation and is required for all
transaction types except comments. The next field is the
decimal number of bytes for the memory transaction or
operation. This field is unused for ‘F’ and ‘P’ trace lines. The
next field is the hexadecimal data for ‘I’, ‘L’, ‘M’, and ‘S’
trace lines. The final field is the scope of the memory where
‘G’ represents global scope, ‘H’ represents heap memory
access, and ‘S’ indicates a stack access. This is required on
‘L’, ‘M’, and ‘S’ trace lines.

DineroIV. DineroIV [5] was used to simulate the cache
activity from the Gleipnir trace files. The released form of
DineroIV is data agnostic and performs all of its cache
simulation using the trace addresses. For the purpose of this
research, DineroIV was modified to track data values to detect
dusty writes. Dirty, valid, and last-access-type status bits were
added for each cache-line byte to classify live, useless, and
untouched accesses of each byte. Modifications were made to
the logic to classify and count the different types of writes as
they occurred throughout the memory hierarchy. Output
functions were added to produce cache simulation statistics
files with the counts of each type of memory access by cache
level and scope. These files included a header specifying the
benchmark being run and the cache configuration name. Then
a separate section for each cache begins with the cache name
and its parameters followed by a list of memory access counts
by memory area, access type, bytes transferred, sub-blocks
transferred, and cache lines transferred. Figure 2 shows the
level 2 cache statistics for the gcc_166 benchmark. This
shows the level 2 caches is unified, 512 Kbytes total size, a
cache line of 64 bytes, a sub-block of 64 bytes, 8-way
associativity, and 1024 sets. The statistics files are input to a

data reduction program that merges the different benchmark
data results to compute the energy consumption and compare
the results by benchmark or cache configuration.

gcc_166,Large-3L
l2-ucache,512,64,64,8,1024
Global,reads,5483712,85683,85683,
Global,untch,322516,0,0,
Global,lives,326075,6,6,
Global,usels,0,0,0,
Global,dusts,101297,2572,2572,
Global,deads,0,0,0,
Global,mixed,0,9139,9139,
Heap,reads,34290560,535790,535790,
Heap,untch,18006417,0,0,
Heap,lives,24557859,4984,4984,
Heap,usels,0,0,0,
Heap,dusts,5940405,18396,18396,
Heap,deads,1715351,28630,28630,
Heap,mixed,0,732678,732678,
Stack,reads,1038272,16223,16223,
Stack,untch,234988,0,0,
Stack,lives,111923,17,17,
Stack,usels,0,0,0,
Stack,dusts,211201,124,124,
Stack,deads,426976,9180,9180,
Stack,mixed,0,6071,6071,
Instr,reads,77214272,1206473,1206473,

Figure 2: Example output from a DineroIV cache simulation

Cacti. Cacti [13] is a cache energy and access time

estimation tool. Cacti version 6.0 was used to provide energy
estimates for each level of the various cache configurations
analyzed in the study. No modifications were made to the
Cacti tool.

4 Experimental Setup

4.1 Benchmarks Analyzed

Five benchmarks totaling seven variations from the

CPU2006 SPECmark series [12] were processed through
Valgrind and Gleipnir. The SPEC benchmarks selected for
this study are representative of industry workloads and are
sufficiently large to exercise the cache. Many of the smaller

IJCA, Vol. 21, No. 3, Sept. 2014

181

benchmarks, such as those in the MiBench [6] benchmark
suite, were found to be components or kernels of applications
rather than complete applications and would sometimes be
wholly contained within the caches. In some cases the last-
level cache was not even utilized in the benchmark’s
execution. The benchmarks selected for use in this study were
required to have a minimum of 1 second and a maximum of 10
minutes of real-time execution. The minimum requirement
assured the benchmark truly exercised the memory subsystem,
while the maximum requirement is needed to create an upper
bound on simulation time and trace-file size. Simulation
execution times were as low as 37 minutes and as high as 52
hours for the selected benchmarks. The SPEC benchmarks
used were bzip2, gcc_166, gcc_200, gcc_c-typeck, gobmk,
hmmer, and mcf. The three variations of gcc were kept as they
each had significantly different memory access profiles from
each other.

4.2 Cache Configurations

There were fourteen cache configurations used to analyze

unnecessary writes in this project. Small, nominal, and large
2-level caches without sub blocks; small, nominal, and large 3-
level caches without sub blocks; nominal 3-level caches with
2, 4, and 8 sub blocks per cache line; nominal 3-level caches
with 16, 32, 64, and 128 bytes per cache line; and nominal 3-
level caches with an increasing number of bytes per cache line
per level of 16/32/64, nominal-3L-mix1, and 32/64/128,
nominal-3L-mix2. This variety of cache configurations is used
to determine if the amount of unnecessary writes is sensitive to
any particular cache configuration parameter or specific
parameter combinations. Every cache configuration uses a
split level-1 (instruction and data) cache and a unified cache at
all other levels. The nominal 2-level cache configuration is
representative of caches similar to the Arm Cortex A-15 [1]
cache with the shared L2 cache equally distributed among the
cores (L1: 32K instruction, 32K data; L2: 1024K per core).
The nominal 3-level cache configuration is representative of
caches similar to the Intel Ivy Bridge [4] cache configuration
with the shared L3 cache equally distributed among the cores
(L1: 32K instruction, 32K data; L2: 256K unified; L3: 2048K
per core). The small cache configurations are 1/2 the size of
the nominal caches and represent caches either smaller than the
nominal configuration or represent the effect of adding
overhead functions for the operating system and its various
processes to the benchmark task. The large cache
configurations are 2 times the size of the nominal caches and
can represent next-generation caches or a benchmark process
getting a double allocation of the shared cache.

4.3 Energy Savings Estimation

A goal of the first phase of this project was an approximate

potential energy savings if all unnecessary writes were
eliminated. It is unlikely that all unnecessary writes can be
removed, but this assumption establishes an upper bound on
the savings that might be achieved. The assumption was made

that reads and writes at each level required the same amount of
energy. This is not true for PCM and flash-memory
technologies where the write energy is significantly more than
the read energy; however, for SRAM caches and DRAM
memories this assumption is suitable. The Cacti cache-energy
estimator was used to estimate the energy per access for each
level of each cache configuration using 32 nm technology.
The study produces results in terms of percentage of energy
saved, so variations in technology and clock rate have minimal
impact on the validity of the study results.

The energy required for memory-level accesses was
computed by summing the energy needed to communicate
between the CPU and the memory with the energy needed for
the memory access. The transfer energy was computed using
the standard energy equation for switching an electronic
signal: E = 1/2 V2 C. The value of C for data lines was chosen
as 20 pF to represent a typical memory data signal’s total
capacitance for the PCB trace capacitance and capacitance of
the connected memory devices. The value of C for address
and control lines was set to 40 pF as there are more memory
devices on each address and control signal. V was set to 1.5
Volts as the nominal voltage swing of single ended DDR3
memory devices. Each data line was toggled at 50 percent of
the transfer rate based on the statistical assumption that each
bit was 50 percent 0 and 50 percent 1. Thus, there is a 50
percent chance that the next bit is different from the present bit
resulting in a 50 percent toggle rate being an appropriate value
for the equation. Each address/control line was assumed to
change once per cache-line access, based on typical DRAM
memory burst-mode operation. The energy for the memory
access was derived from the power required for a burst write
(P = VDD * IDD) divided by the transition rate for the burst (E
= P / T) multiplied by the number of transitions required to
transfer a cache line on a 256-bit memory bus and multiplied
by the number of memory chips needed to implement a 256-bit
memory bus. The Micron MT41J512M8 [9] DDR3 memory
device data sheet provided the VDD, IDD and T values for an
800 MHz memory subsystem. The energy for the cache to
memory controller data transfer within the processor device
and the energy for the memory-controller operation itself was
assumed to be negligible for this phase of the research. As the
final analysis is based on a percentage of energy that could be
saved, moderate variations to these values should have little
influence on the results.

5 Results and Analysis

All of our results are provided as percentages for each

benchmark. This prevents longer-running benchmarks from
dominating shorter-running benchmarks if access counts or
actual energy values were used. All of the results shown in
this paper are based on collecting data by individual bytes
rather than application-level data objects as the present cache
simulator does not maintain information about data-object size
throughout the cache hierarchy. The multi-core cache
simulator being developed for the next phase of this research
will provide data-element size tracking. The memory trace

 IJCA, Vol. 21, No. 3, Sept. 2014

182

files generated by Valgrind and Gleipnir for this research use
virtual addressing. The authors believe that the difference
between virtual and physical addressing will have minimal
impact on this study, although physical addressing will be
incorporated in the next phase of this research to validate this
statement.

Figure 3 shows the unnecessary write breakdown for each
level of the memory hierarchy for the nominal 3-level cache
configuration. The x-axis labels, “LL-category%)'”, identify
the measurement level in the memory hierarchy (LL: L1 cache,
L2 cache, L3 cache, or memory) and the unnecessary write
category (category: dead, dusty, untouched, useless, or total-
wasted, where total-wasted is the total percentage of all
unnecessary writes). The y-axis indicates the percentage of
bytes written at the indicated cache level that belong to the
indicated category. The number is computed by dividing the
number of bytes written at that cache level in the indicated
write category by the total number of bytes written at that
cache level and expressing the result as a percentage. One
observation that can be made is there are very few useless
writes at any level and they have minimal impact to the total
unnecessary writes of the system. Another observation is there
are no dead writes and no untouched writes at the Level 1
cache. As stated earlier, if the processor is accessing memory,

it cannot be classified as a dead write. Also by definition, an
untouched write can occur only during a cache-line write-back,
so a processor-L1 transaction will never have an untouched
write. A general trend can be observed where the percentage
of dusty writes decreases as the level moves further from the
processor. This is a result of the average time between writes
at each cache level increasing as the level increases, reducing
the chance of the same value being written multiple times.
The untouched write category is generally the highest for each
benchmark at the L2, L3 and memory levels, with the notable
exception of hmmer with 99 percent dead writes. The hmmer
benchmark has a large amount of heap activity with a very
large memory footprint causing many cache-line evictions of
deallocated heap objects, producing the very high dead writes
beyond level 1 cache. This graph shows that no single type of
unnecessary write completely dominates all levels or all
benchmarks; therefore all of the unnecessary write types
should be addressed to maximize the possible savings. The
nominal 3-level cache configuration, similar to the Intel Ivy
Bridge, showed a benchmark average of 44.2 percent of all
bytes written to memory as being unnecessary writes.

Figure 4 shows the total unnecessary write percentages by
benchmark for all of the analyzed cache configurations
measured at the memory level. The x-axis labels indicate the

Figure 3: Unnecessary write breakdown by level and type for nominal 3-level cache

Figure 4: Unnecessary Write Breakdown by Cache Configuration

IJCA, Vol. 21, No. 3, Sept. 2014

183

cache size as small, nominal, or large; indicate if it is a two-
level cache, “-2L”, or a three-level cache, “-3L”; indicate if
there are sub-blocks in the cache line, “-2sb, -4sb, -8sb”; the
cache-line block size if it is not the default 64 bytes, “-16blk,
-32blk, -128blk”; and indicate if the configuration used a
mixture of cache-line sizes, “-mix1” (16/32/64 bytes per cache
line) or “-mix2” (32/64/128 bytes per cache line). The y-axis
indicates the percentage of total-unnecessary-write-bytes-
written to total-bytes-written at the DRAM memory level.
This value is computed for a cache configuration by taking the
total number of unnecessary-write-bytes written to memory
and dividing it by the total number of bytes written to memory
for each benchmark and then averaging this percentage for the
benchmarks. In general, smaller cache sizes are observed to
have a slightly higher unnecessary write percentage than larger
cache sizes. The 2-level caches had 52 percent, 48 percent,
and 44 percent unnecessary writes for small, nominal, and
large sizes, respectively. The 3-level caches had 48 percent,
44 percent, and 43 percent unnecessary writes for small,
nominal, and large sizes, respectively. The higher rate of
evictions of the smaller caches result in cache lines with a
higher percentage of untouched bytes. However, in some
cases, such as the mcf benchmark, the unnecessary write
percentage increased slightly with increasing cache size. The
moderation number of dead writes in mcf, 22 percent for
nominal 3L, decreased with faster evictions in the smaller
caches than untouched writes increased with the larger caches.
Some small variations are seen among the caches with 2, 4,
and 8 sub-blocks. However, the variations are minor with the
2 and 4 sub-blocks decreasing the average unnecessary writes
by 0.02 and 0.18 percent. The cache configuration with 8 sub-
blocks actually increased the percentage of unnecessary writes
by 2.48 percent. The cause of the increase in unnecessary
writes when a small decrease was expected has not yet been
determined and will be further examined in the next phase of
the research. The cache configurations with smaller block
sizes resulted in smaller unnecessary writes, although not by a
significant amount. The 16-byte block size yielded 41 percent
unnecessary writes which is 3 percentage points less than the
nominal 64-byte block size. The 128-byte block size yielded

46 percent or 1.4 percentage points higher than the nominal.
This trend was expected, as the larger cache-line sizes will
likely contain larger amounts of untouched data. The cache
configurations with a different block size per level yielded
average unnecessary write percentages within 0.1 percentage
point of the cache configuration with the matching L3 block
size. Some runs were made with different set associativity (2,
4, 8 at L1 with 4, 8, and 16 at L2 and L3), and they resulted in
less than 0.5 percentage point variations. This data shows that
cache size has a moderate effect on unnecessary write
percentages, and all other cache configuration variations have
negligible effects.

Similar information measured at the Level-1 cache, Level-2
cache, and Level-3 cache showed the same general trends,
although some benchmarks have their peak value of
unnecessary writes at different cache levels than others. This
is simply a reflection of the differences in memory footprint
and access sequences of the benchmarks.

The previous analyses have looked at each level of the
memory hierarchy independently and displayed the results as
percentages at that level. The analysis of total energy savings
must be computed for the total memory subsystem before
being made a percentage as the energy per access at each level
differs and the frequency of access at each level is different.
The total energy used at each level was computed by
multiplying the energy required per access at that level by the
sum of the instruction accesses, plus the sum of all read
accesses, plus the sum of all write accesses. The potential
energy savings at each level was computed by multiplying the
energy required per access at that level by the total number of
unnecessary accesses at that level. The total energy and
potential energy savings of each level were summed to get the
total energy and potential energy savings of the complete
memory subsystem. Taking the potential energy savings of the
subsystem and dividing it by the total energy of the subsystem
generated the potential energy savings percentages shown in
Figure 5. The x-axis labels show the same cache
configurations used in and described for Figure 4. The y-axis
shows the percentage of potential energy savings by
benchmark within each cache configuration. The potential

Figure 5: Potential energy savings by cache configuration and benchmark

 IJCA, Vol. 21, No. 3, Sept. 2014

184

energy savings range from 13.2 percent for the large 3-level
cache to 19.6 percent for the nominal 3-level cache using 8
sub-blocks. The Nominal-3L cache configuration shows a
minimum potential energy savings of 6.1 percent for the
gcc_200 benchmark, a maximum potential energy savings of
44 percent for the hmmer benchmark and an average potential
energy savings of 15.5 percent. The potential energy savings
percentages for flash technology and PCM technology will be
higher than those for DRAM systems because the energy
required for writing in those technologies is significantly
higher than the energy used for reading.
 The potential energy savings must be summarized at the
memory subsystem level because of interesting interactions
between the cache levels. The Cacti energy estimates for the
nominal 3-level cache are 0.16 nJ, 0.03 nJ, and 0.11 nJ for the
L1, L2, and L3 accesses respectively. The L2 is lower energy
than the L1 as it is slower and only slightly larger. The L3
energy is higher than the L2 because it is much larger. A
cache-line write to DRAM requires 16.11 nJ. Since accessing
memory requires 100 times the energy of accessing the L1
cache, the results might be skewed to the unnecessary write
percentages seen in Figure 4 for the memory level. However,
the cache handles approximately 99 percent of all accesses
such that the actual number of memory transactions is much
less than the number of cache transactions. There are 100
times more accesses to cache than memory, but each access to
memory requires 100 times the energy as a cache access. The
true picture of energy use is obtained only when all of the
memory hierarchy is included.

6 Proposed Implementations

This paper has identified four types of unnecessary writes

through the memory hierarchy. This section addresses
methods that can reduce or eliminate the unnecessary writes.
Untouched writes are the largest unnecessary write
contribution at all levels past level 1. One approach to
reducing untouched writes is to only write the changed data in
the cache line. However, this actually has a negligible energy
savings as most of the energy in an access is accessing the row
in the memory array. Blocking the write operation for
unchanged data will not save any energy. Untouched writes
can be minimized by compiler optimizations that group
variables that are written at similar times together. For
example, if there are 8 variables that are written from a short
code fragment, the compiler can detect this and allocate
addresses such that those variables share a single cache line
rather than being in up to 8 separate cache lines. Not only will
there be fewer untouched bytes in the one cache line that was
modified, there is only 1 dirty cache line created by that code
fragment where it could have potentially created 8 dirty cache
lines. This could be as simple as changing the assigned
address to some scalar variables or rearranging the order of
elements within a structure in some programs. Reducing the
number of dirty lines and write-backs will improve the cache-
hit efficiency resulting in a slight improvement in program
execution time.

Dead writes are the second largest contributor to
unnecessary writes in the L2 and subsequent levels of memory.
Dead writes can be minimized with fairly simple architectural
changes and run-time library updates. Marking a cache line as
invalid or making a cache line clean by clearing the dirty bit
are common cache operations used when terminating a
program. This prevents writing stale data from the terminated
process to memory that may have been reallocated to a
subsequent process. The addition of cache-line-invalidate or
cache-line-clean operations to the run-time library functions
that free allocated memory will eliminate dead writes when
heap objects are deallocated. This approach can be
implemented with existing cache systems. Another approach
could be implemented within the cache with a
cache-line-batch-invalidate operation that accepts an address
argument and a size argument. This operation would
invalidate all of the cache lines associated with the given block
of memory with a lower processor overhead than performing
the invalidate one line at a time. Additionally, It may be useful
to have all run-time memory allocations aligned to cache-line
boundaries to ensure that no two heap objects can share a
single cache line. These solutions need to be analyzed to
determine the hardware cost, the energy cost, and the runtime
performance cost to provide a cost/benefit analysis of the
features.

Dusty writes are the largest contributor to unnecessary writes
at the L1 cache level. Dusty writes can be detected in run-time
hardware by comparing the written data to the existing data.
By the time the dusty write is recognized, it is too late to
prevent access to the cache line, so no energy can be saved at
the present write cycle. However, when the values are equal,
the dirty bit of the destination cache line can be left unchanged
rather than being set. (If it is already set, it must remain set.)
If all of the writes to that cache line are dusty writes, then the
line will remain clean and will not have to be written back to
the next level when evicted. Additionally, there may be
compiler analyses that can detect dusty write conditions and
remove them during optimization or group them to share
common cache lines.

A useless write is a write whose value is not read in the
future. There is no feasible method for the memory subsystem
to determine at the time of the write whether or not the data
value is going to be read in the future. However, Butts [3] uses
a prediction mechanism in the processor pipeline for useless
instruction elimination that successfully eliminates 79 percent
of useless instructions. There was a reduction in register
writes of 1.7 to 11.3 percent in the benchmarks analyzed by
Butts which is similar to the 1.6 to 13.6 percent of useless
writes for the level 1 cache shown in Figure 3. Figure 3 also
shows that the useless write category has a very small
contribution to unnecessary writes for the level 2 cache, the
level 3 cache, and the main memory. This indicates that
attempting further reduction of useless writes at those memory
levels will be both difficult and have little benefit. However,
since the level 1 cache handles 99 percent of memory accesses,
minimizing the useless writes at the level 1 cache might have a
noticeable improvement in the cache energy savings. As

IJCA, Vol. 21, No. 3, Sept. 2014

185

shown in Butts, many of the useless instructions were created
by instruction scheduling by the compiler. Therefore, it might
be possible for a compiler liveness analysis to determine that
particular writes are useless and to remove them through
compiler optimizations and different instruction scheduling
algorithms.

7 Future Work

There are several tasks to be performed in the next phase of

this project. In addition to the new work, the authors will add
more benchmarks to the analysis to broaden the application
base of this effort. The new benchmarks will still comply with
the real-time execution minimum and maximum limits to
ensure they exercise the memory subsystem sufficiently, yet
remain within reasonable simulation execution times.

The current project collected data by bytes, sub-blocks, and
blocks. A fourth category will be implemented to track write
accesses at the program variable instance. This will eliminate
the upper parts of pointer and index values from being marked
as dusty writes. This will also assist in detecting when
compiler optimizations in structure alignment and variable
grouping have been effective. Tracking data by program
instance will require further modifications to the cache
simulator to track data-element sizes within the cache lines.

Simulations using physical addresses, multiple cores
executing simultaneously, shared memory, and shared caches
will be used in the next phase to more closely model actual
system performance of present day processors. This requires
development of a new multi-core cache simulator.

The list of possible solutions will be expanded in the next
phase. Compiler optimizations will be implemented when
possible or emulated by address manipulation within the trace
file when appropriate. Architectural features will be
implemented and simulated. Each of these optimizations will
be used to create new trace files that will be analyzed to
determine the amount of unnecessary writes that were
eliminated by the optimization. Each architectural feature will
be assessed to determine its costs with respect to increasing
silicon area, increases in energy use, and impacts on critical
paths. This will provide a cost-benefit rating for each of the
methods of unnecessary write reduction.

8 Related Work

Bock [2] analyzed the impact of unnecessary write-backs on

the endurance and energy use of PCM main memory.
Although the specific tools varied, the Bock analysis
framework was very similar to that used in this paper. The
main difference in this paper was attacking the more general
problem of unnecessary writes at each level of the hierarchy
and determining potential energy savings in DRAM memories.
This paper also used the Cacti cache energy estimation tool to
provide energy estimates at each level of the cache as the
energy per access and number of accesses at each level vary
dramatically. This allowed us to compute the potential energy
savings for the entire memory subsystem rather than just the

memory level and to determine that the potential energy
savings would be worth pursuing in the next phase of this
research.

Lepak [8] analyzed “silent stores” showing an 11 percent
performance improvement achieved by detecting and
eliminating these stores in a two-level write-through system.
These “silent stores” correspond to our dusty write category
that are shown in Figure 3 to be the dominant unnecessary
write at the L1 cache, a minor contributor to the unnecessary
writes at the L2 and L3 cache, and almost negligible at the
main-memory level of the write-back cache used in this study.
The Lepak paper considered microarchitecture changes in the
pipeline and changes to Error Correction Codes (ECC) as
methods to implement their silent store reductions while our
focus is compiler optimizations and cache implementations.

Butts [3] analyzed the detection and elimination of dynamic
dead-instructions with a mechanism similar to branch
prediction and eliminates execution of those instructions
whose results are not used in subsequent code. Their work
eliminates generation of values in registers in addition to write
cycles from store instructions. These stores would correspond
to the useless write category of unnecessary writes discussed in
our paper. We saw minimal useless writes beyond the level 1
cache in Figure 3. However, most of the benefits of dynamic
dead-instruction elimination occur within the execution
pipeline and are therefore complementary and additive with
respect to our paper.

Shidal [11] is also looking at ways to more efficiently utilize
caches by reducing write-backs from cache due to objects that
will be removed through garbage collection. Our research is
currently limited to languages that explicitly free memory,
while Shidal’s work is oriented to languages with background
garbage collection. A final solution to unnecessary writes will
benefit from merging the results of both activities, rather than
selecting one of the two approaches.

9 Conclusion

We have characterized and quantified the unnecessary writes

throughout the cache-memory hierarchy using industry-
standard benchmarks and shown significant amounts of
unnecessary writes occur at each level of the hierarchy. We
have shown that cache size has a moderate effect on the
amounts of unnecessary writes and that other cache
configuration parameters have negligible effects on the amount
of unnecessary writes. We have shown that elimination of all
of the unnecessary writes would save 15 percent of the power
consumed in a typical cache-memory subsystem and have
embarked on future work to determine how much of the power
savings can be achieved through compiler and architectural
enhancements. Some of these enhancements will reduce cache
conflicts, producing higher cache hit rates with a subsequent
reduction in read power and reduction in memory bandwidth.
Additionally, the reduction in unnecessary writes will extend
the lifetime of memory technologies that have limited write-
cycle endurance. Reduction in unnecessary writes can also be
affected by programming practices. For example, a

 IJCA, Vol. 21, No. 3, Sept. 2014

186

programmer who does not free memory when it is no longer
needed will prevent the system from classifying those writes as
dead writes.

Acknowledgements

This research is supported in part by NSF award #1237417

and by industrial memberships of the NSF Net-Centric
IUCRC. The authors wish to acknowledge the support given
by Tomislav Janjusic of UNT on Valgrind and Gleipnir usage
and Mike Ignatowski and Dave Mayhew of AMD for their
suggestions and insights into cache-memory subsystems of
current and future computer systems.

References

[1] Arm Cortex-A15 Technical Reference Manual,

Chapters 6-7, http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0438g/index.html, 2012.

[2] S. Bock, B. Childers, R. Melhem, D. Mosse, and Y.
Zhang, “Analyzing the Impact of Useless Write-Backs
on the Endurance and Energy Consumption of PCM
Main Memory,” ISPASS 2011, IEEE Conference
Publications, NY, NY, pp 56-65, 2011.

[3] J. A. Butts and G. Sohi, “Dynamic Dead-Instruction
Detection and Elimination,” Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-X), ACM, New York, NY, USA, pp. 199-
210, 2002.

[4] M. Chiappetta, “Intel Core i7-3770K Ivy Bridge
Processor Review,” http://hothardware.com/Reviews/
Intel-Core-i73770K-Ivy-Bridge-Processor-
Review/?page=3, April 23, 2012.

[5] M. Hill, DineroIV web site, http://pages.cs.wisc.edu/
~markhill/DineroIV/, 1998.

[6] S. M. Z. Iqbal, Y. Liang, and H. Grahn, “ParMiBench -
An Open-Source Benchmark for Embedded
Multiprocessor Systems,” IEEE Computer Architecture
Letters, IEEE Computer Society, New York, 9(2):45-
48, July-December 2010.

[7] T. Janjusic, K. Kavi, and B. Potter, Gleipnir: A Memory
Analysis Tool, International Conference on
Computational Science 2011, Elsevier Ltd., pp 2058-
2067, 2011.

[8] K. M. Lepak and M. H. Lipasti, “Silent Stores for Free,”
IEEE/ACM International Symposium on Micro-
architecture, IEEE Computer Society, New York,
MICRO 33, pp. 22-31, December 2000.

[9] MT41J512M8 DDR3 SDRAM Data Sheet, Micron
Technology, http://www.micron.com, 2009.

[10] N. Nethercote and J. Seward, “Valgrind: A Program
Supervision Framework,” Electronic Notes in
Theoretical Computer Science, Elsevier Science B. V.,
89(2):44-66, 2003.

[11] J. Shidal, Z. Gottlieb, R. Cytron, and K. Kavi, “Trash in
Cache: Detecting Eternally Silent Stores,” ACM

SIGPLAN Workshop on Memory Systems Performance
and Correctness (MSPC-2014), Edinburgh, Scotland,
Co-located with PLDI 2014, June 13, 2014.

[12] SPEC Benchmark Information, http://www.spec.org/
cpu2006/Docs, 2006

[13] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B.
Brockman, and N. P. Jouppi, “A Comprehensive
Memory Modeling Tool and its Application to the
Design and Analysis of Future Memory Hierarchies,”
International Symposium on Computer Architecture, ,
IEEE Press, New York, pp. 51-62, 2008.

Charles Shelor is currently a PhD
candidate in Computer Engineering at
the University of North Texas with
research interests in computer
architecture, dataflow processing, and
embedded systems. He received an MS
in Electrical Engineering from Louisiana

Tech University in 1976 and BS in Electrical Engineering,
Magna Cum Laude, from Louisiana Tech University in 1975.
He has been a registered professional engineer since 1982 and
is a member of IEEE and ACM.

He has been granted 13 patents through 25 years of
embedded systems design with ASIC and FPGA development
experience with Lockheed Martin, Efficient Networks and
Alcatel-Lucent plus 6 years of processor design with Cyrix and
Via Technologies. He also was an ASIC and FPGA design
methodology consultant teaching structured, reusable design
techniques for 4 years as Shelor Engineering. He was the
author of the “VHDL Designer” feature for the “VHDL
International Times” newsletter for 2 years. He won the
VHDL International programming contest in the industry
category in 1994.

Jim Buchanan received the B.S. degree
in Computer Engineering from the
University of North Texas (UNT),
Denton, TX, USA, in 2013. He is
currently pursuing the Ph.D. degree in
Computer Science and Engineering at
UNT. Jim also received the B.S. degree
in Kinesiology from Texas A&M
University, College Station, TX, USA, in
2000.

He spent a decade in sport marketing and the golf industry
prior to his time at UNT. He is currently the Engineering Labs
Technician for Computer Science and Engineering overseeing
the embedded systems, communications systems, and senior
design labs. His research interests involve computer
architecture and sustainability of embedded and real-time
systems.

http://infocenter.arm.com/help/index.jsp?%20topic=/com.arm.doc.ddi0438g/index.html
http://infocenter.arm.com/help/index.jsp?%20topic=/com.arm.doc.ddi0438g/index.html
http://hothardware.com/Reviews/
http://www.spec.org/cpu2006/Docs
http://www.spec.org/cpu2006/Docs

IJCA, Vol. 21, No. 3, Sept. 2014

187

 Krishna Kavi is currently a Professor
of Computer Science and Engineering at
the University of North Texas (UNT)
and the Director of the National Science
Foundation (NSF) Industry/University
Cooperative Research Center for Net-

Centric and Cloud Software and Systems. During 2001-2009,
he served as the Chair of CSE at UNT. He also held an
Endowed Chair Professorship in Computer Engineering at the
University of Alabama in Huntsville, and served on the faculty
of the University Texas at Arlington. He was a Scientific
Program Manger at NSF during 1993-1995. He served on
several editorial boards and program committees.

His research is primarily on Computer Systems Architecture
including multi-threaded and multi-core processors, cache
memories, 3D DRAMs and Processing in Memory. He also
conducted research in the area of software engineering, parallel
processing, and real-time systems. He published more than
200 technical papers in these areas. He received his PhD from
Southern Methodist University in Dallas Texas and a BS in EE
from the Indian Institute of Science in Bangalore, India.

Ron K. Cytron is a Professor of
Computer Science and Engineering at
Washington University. His research
interests include optimized middleware
for embedded and real-time systems, fast
searching of unstructured data,
hardware/runtime support for object-
oriented languages, and computational

political science.
Ron has over 100 publications and 10 patents. He has

received the SIGPLAN Distinguished Service Award and is a
co-recipient of SIGPLAN Programming Languages
Achievement Award. He served as Editor-in-Chief of ACM
Transactions on Programming Languages and Systems for 6
years. He participated in writing the Computer Science GRE
Subject Test for 8 years and chaired the effort for 3 years.

He is a Fellow of the ACM.

	Abstract
	1 Introduction
	2 Write Classification
	3 Tools Used
	4 Experimental Setup
	5 Results and Analysis
	energy savings range from 13.2 percent for the large 3-level cache to 19.6 percent for the nominal 3-level cache using 8 sub-blocks. The Nominal-3L cache configuration shows a minimum potential energy savings of 6.1 percent for the gcc_200 benchmark,...
	The potential energy savings must be summarized at the memory subsystem level because of interesting interactions between the cache levels. The Cacti energy estimates for the nominal 3-level cache are 0.16 nJ, 0.03 nJ, and 0.11 nJ for the L1, L2, an...
	6 Proposed Implementations
	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgements
	References

